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Abstract
The 2 pass raster segmenter is simple, fast and is often

quoted in the literature. Unfortunately, it tends to oversegment
images even in the presence of small amounts of noise. In this
paper we present a generalization of this approach where we dis-
cover regions by taking multiple random paths through an image.
This approach fares better but still over segments an image. Yet,
an analysis of region density shows that the underlying image
structure can be discovered from the path based segmentation.
Indeed, the discovered edges are comparable to those discovered
by the widely used mean shift algorithm.

1. Introduction
From Land’s Retinex to scale-space processing [1], path-

based methods have often been used with success in image
processing and computer vision. Those paths can usually be di-
vided in three categories: short random walks (as in [2] and [3]),
partially complete (in the sense that they cover the entire image),
such as Frankle MacCann spiral path for retinex [4] or complete
as for raster paths for segmentation [5]. Most examples of com-
plete paths are instances of the more general class of Hamiltonian
paths, whose definition is “A path in a graph such that every ver-
tex is visited once and once only” [6] (or, in terms of images we
visit each pixel once and visit all pixels in the image). A frame-
work to derive random Hamiltonian paths in images has recently
been proposed in [7] and the authors have used them success-
fully to remove shadows from images. In this paper we present a
framework for color image segmentation based on Hamiltonian
paths, in order to obtain a simple yet accurate edge map of a color
image.

The problem of image segmentation has been studied for a
long time and has spawned a wide variety of approaches ([8],[9]
and [10] among others). The best performing algorithms cur-
rently make use of a combination of color, texture and scale fea-
tures and usually have many of parameters that can be adjusted
for optimum segmentation. As a result, many of these algorithms
are either difficult to implement and/or computationally expen-
sive to use. One of the goals of this paper is to develop a segmen-
tation algorithm that is equally powerful to antecedent methods
but due to its simple path based implementation is simpler and
easier to implement.

We first introduce the 2-pass raster segmentation commonly
cited in the literature. We then review the Fredembach and Fin-
layson method to obtain random Hamiltonian paths [7]. We then
show how to use simple first and second order statistics on color
channels calculated along a path to group similar pixels. Af-
ter a single Hamiltonian path through the image there are many
line like segmented structures (as oppose to desired regions). We
group these linear structures and discover arbitrarily shaped re-
gions by repeating our segmentation along different paths where
now we group together the linear structures. After a small num-
ber of path segmentations we can discover arbitrarily shaped re-

gions. We provide a detailed discussion of the convergence of
our method.

Section 2 presents the standard two pass path based raster
segmentation. We also review how arbitrary random Hamil-
tonian paths can be created and discuss our path based segmen-
tation idea. In section 3 we look at how path based segmentation
works in experiments and this allows us to elaborate on the basic
algorithm. Results on real images are presented in section 4 for
our path based approach and for the widely used mean shift al-
gorithm. For the images tested both algorithms provided broadly
similar performance, with the former being delivered much more
quickly. The paper concludes in section 5.

2. Background
2.1. Raster Segmentation (Sequential Labelling)

Sequential labelling is a technique used in computer vision
for efficient segmentation of images [5]. Two orthogonal raster
paths (such as the ones shown in figure 1) are used sequentially
to connect pixel belonging to a same region. This method, first
based on binary images, where determining the connectivity of
pixels is straightforward [11] was then extended to encompass
grayscale and color images [10].

Figure 1. The 2 orthogonal raster paths used in the original sequential

labelling method.

The sequential algorithm proceed as follows. The image is
examined according to the paths shown in figure 1. If neighbor-
ing pixels are connected, they are then assigned the same label.
When a pixel can be connected to more than one of its neigh-
bors, the labels are considered to be equivalent (and are therefore
merged).

To determine whether neighboring pixels are similar we will
use Nayar and Bolle’s reflectance ratio criterion (see eqn 1 be-
low).

Ia− Ib

Ia + Ib
≤ θ (1)

This reflectance ratio, taken for image pixels a and b has the ad-
vantage that, for grey scale, it is independent of intensity. And,
if computed on R, G, and B separately the triplet of ratios is in-



dependent of illumination [10]. And, so, supports segmentations
which are independent of the lighting conditions.

2.2 Hamiltonian Paths
The problem of generating Hamiltonian paths in a general

graph has been shown to be NP-complete [12]. Images, how-
ever, can be considered as a special class of graphs, namely grid
graphs. In [7], a method to find Hamiltonian paths in such graphs
in a linear time has been proposed. Briefly described, Hamil-
tonian paths are found in 4 steps, illustrated in figure 2. Down-
sampling (reducing the size of the graph by a factor 4 (the image
is reduced by half in the x and y directions), finding a minimum
spanning tree on this downsampled graph, upsampling (increas-
ing the size of the graph by a factor 4) the tree and finally com-
pleting the graph. Randomness can be ensured by weighting all
edges in the original graph with random weights prior to com-
puting the minimum spanning tree. Refer ro [7] for a more com-
plete description and proof that the method always generates a
complete Hamiltonian path.

Figure 2. From the original graph to the final Hamiltonian cycle, all the

steps used in creating such a path.

Since this method can generate a large number of random
paths, we propose that can segment images with more accuracy
than the 2-pass algorithm: we can use multiple paths to discover
region connectivity. In the 2 pass approach to get large regions
one needs to be “optimistic” about the underlying image structure
and so use a fairly large threshold to determine pixel (and hence
region) similarity. With multiple paths we can be “pessimistic”
and use a smaller threshold since we are secure in the knowl-
edge that we can joint pixels in multiple different ways. Using
a large number of paths results in a area-like processing of the
image, despite it not being explicitly defined in the segmentation
algorithm.

Finally, we note that while the paths can be efficiently com-
puted, they can also be pre-computed for a certain image size.
Thus the algorithm cost is the number of pixels multiplied by the
number of paths. Typically, the latter is small and so the algo-
rithm is very fast.

3. Segmenting Images
Let us now consider how images are segmented. Before

proceeding further we are interested in the plausibility of our ap-
proach. If we an image with 2 regions that are hard to segment
can we automatically find the segmentation?

3.1. Convergence of the Algorithm
Let us create an image that consists of a double spiral. The

two spirals are 1 pixel wide, while the image itself is of size
256x256, as illustrated in figure 3a. The first step in sequential
labelling is to label all pixels in the image as belonging to a dif-

ferent region; here we have 256x256 pixels so we have 65536
different regions. We then recursively use the different pre-
computed paths to process the image, using the color reflectance-
ratio merging criterion [10], i.e. 2 labels a and b are equivalent
if

max{Ra−Rb

Ra +Rb
,

Ga−Gb

Ga +Gb
,

Ba−Bb

Ba +Bb
} ≤ θ (2)

Where we defined θ to be 0.035

Figure 3. (a): The spiral figure used in the convergence experiment. (b):

The curve showing the actual convergence.

If the structure of the different paths is random enough, and
if the set of paths is complete with respect to the image size, then
the segmentation should converge towards two distinct labels.
Figure 3b displays the number of distinct labels (i.e. regions)
after each path. After 29 paths, the algorithm has converged to
2 distinct regions, each of them containing one spiral. Due to
the random nature of the paths, we repeated this experiment 50
times. The mean number of paths of convergence was 26 and the
highest number was 31. From this example, it can be inferred
that since “real” images generally have much larger regions, the
algorithm should then converge in most cases with less paths.
For equivalently sized images, we have used 15 different paths,
since the improvement in quality beyond was not significant.

Moreover, it is simple matter to prove convergence in gen-
eral. Consider we have an image with distinct regions where each
region can be discriminated from one another using the ratio test.
The segmentation fails if after n iterations we have two adjacent
pixels that should belong to the same region but are labelled dif-
ferently. By assumption, these adjacent pixels satisfy the ratio
criterion and so if we considered a path that joined these pixels
together then these pixels (and their associated regions) would
be merged. Since our paths are generated randomly this must
happen given enough paths.

3.2. Segmentation Experiment on a real image
We are now interested in the detail of our algorithm. How

will it perform on a real image? Top left of Figure 4 shows a
simple image with well defined colour regions. Let us now con-
sider what happens when we recursively apply out path-based
method using the ratio criterion. Figure 4 shows the evolution
of the segmentation for an image (each white pixel is consid-
ered to belong to an edge between regions, the black areas are
the regions). These different steps picture how the segmentation
converges towards stability, usually after 15 steps or so. While
the convergence is fast, as shown in Fig. 4 curve, it is really the
steps between paths number 10 and 15 that effectively denoise
the segmentation.

The method chosen to represent the segmentation is one
based on regions density. The underlying assumption of this
method is that a segmented image is composed of several regions



Figure 4. From left to right and top to bottom: The original image and

the segmentations after 1 (all white since the first step is to label all pixels

differently), 2, 5, 10 and 15 paths respectively. The curve on the 3rd row

shows the speed of convergence for this particular image.

within which the pixels have the same “label”. The region den-
sity is obtained by sliding a small n× n window over the image
(in all our experiments, n = 3). The number of different regions
(or labels) within this window expresses the region density for
the center pixel. If we look in a small window and there is a sin-
gle underlying region then we say this window has density 1. If
there are two regions then we have density 2 and so a small edge,
up to a region density of 9 (the maximal value) where all pixels
within the window belong to a different region.

By definition, all pixels within a region have the same value
(labels). A region density higher than one is therefore indicative
of the presence of an edge. Additionally, since the segmenta-
tion is based on color ratios, we can encounter very high region
densities in case of fast-changing reflectances, such as in grass
or vegetation regions. However, most of the pixels belonging
to such regions will appear solid white on the density map and
edges can also therefore be extrapolated. This explains the fairly
large regions among tree leaves and grass in figure 8.

We can use this approach because, in effect noise is not a
significant factor in our edge maps. An illustration can be seen in
figure 5, where the region density of the original image is shown
on the left and the right image is the edges obtained with our
method. The original image contains significant noise, but the
use of several random paths in effect denoised the image while
preserving edge information.

4. Results
We first compare our results with the ones obtained using

the 2-pass raster scan method. From the convergence curves pre-
viously shown, we see that the main reduction in the number of
regions occurs within the first step. We might therefore expect
both methods to deliver similar number of regions and, using the
density approach described above, the segmented images would
have similar edge representations. The results, displayed in fig-
ure 6 are mitigated. While the strong edges of the image are
present in both results, we also see that the edge density map for
the raster segmentation is much noisier. And, this shows that it

Figure 5. Left: region density of the original image. Right: region density

of the segmented image.

has not merged regions as effectively as our multiple path ap-
proach.

Figure 6. Left: region density of the raster segmented image. Right:

region density of the segmented image.

Figure 7 and 8 show results obtained with a variety of im-
ages. In figure 7, the first column contains the original images
and the second edges obtained with the 2-pass raster approach. In
figure 8, the first column are the edges obtained with our method
while the second column are edges obtained with the widely used
meanshift [9] algorithm (which we used with the default parame-
ters).

From these results, two main aspects can be observed. The
first one is that, as previously thought, the results from our algo-
rithm are an improvement over the original sequential labelling
formulation problem. The second one, when comparing our re-
sults to meanshift is that while our algorithm is intrinsically much
simpler, the results are broadly comparable. Both the 2-pass
approach and our method also contain large vegetation regions
compared to the meanshift algorithm. Since those regions are
rapidly changing reflectance-wise, their underlying region den-
sity will be high. Filtering the region density map with a simple
point-based high pass filter allow us to extract edges for both
black (low density) and white (high density) regions. The re-
sulting edges therefore oversegment some parts of the image,
while undersegmenting others. The only drawback however, is
the presence of noisy regions that can be explained by the fact
that we only use local color information to merge different la-
bels/regions. We are currently developing second order metrics
(rate of change within an area) in order to “clean up” the seg-
mentations and obtain finer segmentations for highly textured re-
gions.

5. Conclusion and Future Work
Up to this point, only first order statistics have been used

in our segmentation framework. The obtained edges are, while
accurate, sometimes either too thick or too noisy compared to the



Figure 7. 1st Column: Original images, 2nd column: edges obtained with

the raster method

size of segmented regions. In [10], Nayar and Bolle discarded
noisy or small regions in order to focus only on “valid” regions.
Here, we however would like to obtain a full segmentation of the
image. To improve current segmentations, one will have to look
at higher order statistics, such as the rate of changes, in order to
accurately detect and segment textures without adding too much
complexity.

The 2 pass raster segmenter is simple and fast and is often
quoted in the literature. Unfortunately, it tends to oversegment
images even in the presence of small amounts of noise. In this
paper we present a generalization of this approach where we dis-
cover regions by taking multiple random paths through an image.
This approach fares better but still over segments an image. Yet,
an analysis of region density shows that the underlying image
structure can be discovered from the path based segmentation.
Indeed, the discovered edges are comparable to those discovered
by the widely used mean shift algorithm

Figure 8. 1st Column: Edges obtained with our method, 2nd column:

edges obtained with the meanshift algorithm
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