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Abstract 
We show how illuminant and reflectance spectra can be 

accurately measured or separated, up to a multiplicative factor, 
at each pixel of a scene by using a CCD digital camera instead 
of a spectroradiometer. In order to obtain suitable spectra of 
both illuminants and reflectances in a scene, we may use a 6-
channel measure from the digital 3-channel RGB camera. This 
is accomplished by taking two images of the scene, and using a 
colour filter during the second. No other practical or 
theoretical restrictions are needed to apply this separation 
algorithm, which is based on the validity of low-dimensional 
linear models for representing illuminant and reflectance 
spectra. 

Introduction  
A colour signal [1], or radiance spectrum, can be defined 

as any function which represents the spectral power distribution 
(SPD) of the product of the spectral reflectance of one pixel of 
an object and the SPD of the light source that illuminates it. 
The ability to separate the surface reflectance spectrum from 
the illuminant spectrum at each pixel is useful for many tasks, 
and it is still one of the unsolved problems in multispectral 
colour science. For example, surface spectral reflectance data 
can be used to classify minerals [2] or to simulate the colour 
appearance of an object under illuminant changes, which would 
be desirable for visually guided robots, automatic terrain 
classiffication by remote sensing or for better colour 
reproduction in colour displays, among many other applications 
[3]. Achieving this spectral signal separation by means of 
digital cameras and multispectral techniques would be specially 
useful, leading the way to use portable digital cameras -instead 
of spectrometers- to render high spatial resolution colour 
images. 

In this work we use the Wiener estimation method [4] to 
obtain the spectral colour signal of a scene from the simulated 
responses of a trichromatic camera coupled with a filter, instead 
of using a spectrometer [2,3]. We then separate this radiance 
spectra into spectral reflectance and illuminant components by 
using the method proposed by Ho et. al. [3], which has been 
also used by other authors but always making use of spectral 
radiance measurements from a spectrometer [2,3] instead of 
using a trichromatic camera and a filter. We find that spectral 
reflectance and illuminant can be accurately obtained at each 
pixel, up to a multiplicative factor, from trichromatic camera 
measurements of a scene by making use of finite-dimension 
linear models for reflectance and illuminant spectra. 

Method 
The RGB digital camera had spatial resolution 1280 × 

1024 pixels (QImaging, model Retiga 1300, QImaging Corp., 
Canada) and 12 bits intensity resolution per channel. Several 
hyperspectral colour signal data from various scene fragments 

[5] were used as training spectra for the Wiener estimation 
method to obtain the matrix relating colour signals and camera 
responses (recovery matrix). The “matrix-training set” S, used 
to obtain the recovery matrix, was formed from 30 different 
fragments taken from 30 scenes, each fragment of size 151 × 
151 pixels. The six camera responses ri to the color signals (i = 
1,..,6 for red, green, and blue sensors, respectively and three 
additional responses for the camera coupled with a blue plastic 
filter) were computed. The six camera responses for each pixel 
formed the response matrix R for the entire colour signal set. 
The recovery matrix D was then computed from the 
pseudoinverse of R (denoted by superscript +) by 

D = SR+ (1) 
 
An estimate Ŝ1 of a set of test spectra S1 may then be 

obtained from a given set of camera responses R1 by applying 
the transformation matrix D, that is 

Ŝ1 = DR1 (2) 
 
Once we have estimated the spectral colour signal from 

camera responses usign the Wiener method, we can apply Ho 
et. al. algorithm [3] to separate illuminant and reflectance 
components of this colour signal. This method is based on the 
use of finite-dimensional linear models for surface reflectance 
and illuminant spectra [2,3]. For example, performing a 
principal component analysis (PCA) [6] over a set of 
previously registered spectral measurements, or training 
spectra, provides a set of vectors (called eigenvectors or 
principal components) which can be linearly combined to 
obtain the spectral estimation of a reflectance and an illuminant 
spectrum. The weights in these linear combinations are chosen 
to minimize the mean square error of the estimation in the 
space of spectral curves over all the training spectra. Hence, we 
have 
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where Vi and εi are respectively the eigenvectors and 

coefficients used in this linear combination for reconstructing N 
sampled wavelengths of the illuminant spectrum E. For surface 
reflectance, Wj and σj are respectively the reflectance basis 
vectors and coefficients for reconstructing the surface 
reflectance spectrum S. We use a training set of 105 
hyperspectral reflectance measurements [5] to perform a PCA 
and construct Wj, and a set of 2600 daylight spectral 
measurements [7] to construct Vi. These two training sets were 
not used to test the system later, on the contrary of previous 
works [2,3]. The colour signal or radiance spectrum is the 



 

 

product of the illuminant and the reflectance spectra, and can 
be expressed as 
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We can solve this equation in two ways [2,3]. First, we 

can write an equation for each λ and solve for the combinations 
εiσj if N > n·m (which is known as linear method [2]). On the 
other hand, we can try to minimize the distance 
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deriving with respect to the coefficients σj, εi and equalling to 
zero [3], if we do this we obtain two sets of equations in each 
set of coefficients which can be iteratively solved to obtain the 
separated reflectance and illuminant spectra (this method is 
called non-linear method [2]). Since the surface reflectance and 
illuminant spectral curves are obtained up to a multiplicative 
factor [2,3], we will normalize all the curves in order to 
compare their relative spectral shape [3]. 

In this work we test these algorithms by separating 
illuminant and surface reflectance curves from a set of 68403 
colour signals recovered from simulated camera responses in 3 
different scenes of size 151x151 pixels; the reflectances of 
these recovered signals were not included in the PCA of the 
surface spectral reflectances. 

Imai et al. [8] suggest that “mononumerosis” should be 
avoided when evaluating the quality of spectral matches. By 
this term they mean that several metrics should be used to 
assess color reconstruction from both colorimetric and spectral 
standpoints. Here, we measure the accuracy of the estimations 
by using two kinds of metric [9,10]: a spectral metric like GFC 
(which stands for the goodness-fit-coefficient [4,7,9]) and 
CIELAB distance ∆E*

ab. 

Results 
We show in this section the accuracy of the normalized 

spectra obtained after applying the separation algorithm [3] to 
the radiance spectra obtained from the responses of the 
trichromatic camera with the blue filter and without any filter, 
instead of using spectrometer data. 

In Table 1 we show some mean ± standard deviation (SD) 
values for the GFC and ∆E*

ab metrics when estimating 
illuminant curves with different numbers (m and n; we 
simulated for m = 1,..,4 and n = 2,..,12 in the complete study) 
of basis vectors for illuminants and reflectances using the linear 
method explained before. Table 2 is identical for reflectance 
estimations using the linear method. Table 3 shows the results 
for these two metrics when estimating illuminant curves using 
the non-linear method and Table 4 is for reflectances using  
also the non-linear method. 

We found m=2 and n=11 as the optimum dimensions for 
the lineal method (if we make a balance between reflectances 
and illuminants and the two metrics used for each), while 
choosing m=2 and n=4 lead to the best results with the non-
linear method. These differences in the optimum dimensions of 
the two spaces for the two methods were not considered before 
by other authors using this same separation algorithm [2,3]. 

 

Table 1. Mean and SD values for GFC and CIELAB ∆E*
ab  

metrics for illuminant spectra and the linear method. In bold 
type are the best results balanced between reflectances and 
illuminants and the two metrics used. 

m N GFC ∆E*
ab 

2 4 0.964±0.083 5.6±5.0 
2 7 0.992±0.010 1.9±1.6 
2 8 0.994±0.007 1.8±1.4 
2 11 0.994±0.008 1.4±0.8 
3 3 0.996±0.006 1.2±0.9 
3 7 0.992±0.005 2.0±0.8 
3 8 0.995±0.004 1.3±0.9 
3 10 0.960±0.042 2.2±1.6 

Table 2. Mean and SD values for GFC and CIELAB ∆E*
ab  

metrics for reflectance spectra and the linear method. In bold 
type are the best results balanced between reflectances and 
illuminants and the two metrics used. 

m n GFC ∆E*
ab 

2 4 0.951±0.062 6.7±4.2 
2 7 0.969±0.023 4.2±2.0 
2 8 0.968±0.021 4.3±2.0 
2 11 0.957±0.031 4.1±2.1 
3 3 0.921±0.043 4.2±2.0 
3 7 0.948±0.021 3.5±1.9 
3 8 0.944±0.032 4.1±1.9 
3 10 0.871±0.131 3.6±2.0 

Table 3. Mean and SD values for GFC and CIELAB ∆E*
ab  

metrics for illuminant spectra and the non-linear method. In 
bold type are the best results balanced between reflectances 
and illuminants and the two metrics used. 

m n GFC ∆E*
ab 

2 4 0.992±0.008 1.9±1.4 
2 7 0.991±0.011 1.8±1.6 
2 8 0.991±0.011 1.9±1.6 
2 11 0.991±0.012 1.7±1.5 
3 3 0.984±0.018 3.3±2.6 
3 7 0.982±0.017 2.9±1.7 
3 8 0.982±0.018 2.8±1.7 
3 10 0.982±0.018 2.7±1.6 

Table 4. Mean and SD values for GFC and CIELAB ∆E*
ab  

metrics for reflectance spectra and the non-linear method. In 
bold type are the best results balanced between reflectances 
and illuminants and the two metrics used. 

m n GFC ∆E*
ab 

2 4 0.990±0.006 1.7±1.4 
2 7 0.987±0.015 1.6±1.4 
2 8 0.987±0.018 1.6±1.5 
2 11 0.987±0.023 2.1±1.6 
3 3 0.976±0.024 2.8±1.9 
3 7 0.980±0.023 2.3±2.1 
3 8 0.980±0.021 2.3±2.1 
3 10 0.980±0.022 2.3±2.1 

 
Figure 1a shows the spectral curves of surface reflectance, 

and Figure 1b for illuminant spectra, for the median value of 
the GFC metric among the test set of 68403 spectral curves of 
colour signals when using the linear method. Figure 2 is 
analogous for the non-linear method. In each case the best 



 

 

number of eigenvectors m and n was used according to the 
results shown in Tables 1 to 4. 

 

 
Figure 1a. Surface reflectance SPDs recovered using  the linear method. 

 
Figure 1b. Illuminant SPDs recovered using  the linear method. 

 
Figure 2a. Surface reflectance SPDs recovered using the non-linear 
method. 

 
Figure 2b. Illuminant SPDs recovered using  the non-linear method 

Conclusions 
We can see how the two methods permit to accurately 

separate illuminant and reflectance information from a given 
radiance spectrum at a pixel, which was estimated from the 
responses of a trichromatic camera with a blue filter and 
without filter instead of using a spectrometer and any other 
additional measurement for spacial correlation or a priori 
illuminant estimation. The results seem even better if we 
remember that the test spectra composing the radiance colour 
signal were not included in the PCA to train the system. The 
linear method separates illuminants with slightly better 
accuracy than the non-lineal method, but this last obtains much 
better reflectances. The optimum dimensions of reflectance and 
illuminant spaces obtained for each method are different, a fact 
not accouted for by other authors [2]. 
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