
Automatic Red-Eye Removal based on Sclera and Skin Tone
Detection
Flavien Volken, Johann Terrier, Patrick Vandewalle; School of Computer and Communication Sciences, Ecole Polytechnique
Fédérale de Lausanne (EPFL), Switzerland

Abstract
It is well-known that taking portrait photographs with a

built in camera may create a red-eye effect. This effect is caused
by the light entering the subject’s eye through the pupil and re-
flecting from the retina back to the sensor. These red eyes are
probably one of the most important types of artifacts in portrait
pictures. Many different techniques exist for removing these ar-
tifacts digitally after image capture. In most of the existing soft-
ware tools, the user has to select the zone in which the red eye
is located. The aim of our method is to automatically detect and
correct the red eyes. Our algorithm detects the eye itself by find-
ing the appropriate colors and shapes without input from the
user. We use the basic knowledge that an eye is characterized
by its shape and the white color of the sclera. Combining this
intuitive approach with the detection of “skin” around the eye,
we obtain a higher success rate than most of the tools we tested.
Moreover, our algorithm works for any type of skin tone. The
main goal of this algorithm is to accurately remove red eyes from
a picture, while avoiding false positives completely, which is the
biggest problem of camera integrated algorithms or distributed
software tools. At the same time, we want to keep the false neg-
ative rate as low as possible. We implemented this algorithm in
a web-based application to allow people to correct their images
online.

Introduction
The red-eye effect, which is one of the most common ar-

tifacts in amateur photographs, is very disturbing. Most ama-
teurs and many professionals currently use digital still cameras.
This evolution has made the post-processing of the image eas-
ier. In particular, many digital camera manufacturers provide a
red eye removal method in their integrated software. We have to
distinguish between manual processing methods, where the user
has to select the red eye in the picture, and automatic process-
ing [1, 2, 3, 4, 5, 6, 7], where the eye is detected automatically.
The algorithms used to perform this task are often hidden in a
“black box,” but in most cases this processing is based on an au-
tocorrelation of the image (edge detection) or on face detection
techniques [8] (widely used in biometry) for the automatic re-
moval. Unfortunately, the result is not always perfect or not the
one expected.

We use a very intuitive approach to red-eye removal, which
is not based on face recognition. First of all, we detect red zones
in the image. Then we calculate the roundness of each zone
and the amount of white around this red zone (detection of the
sclera). We also calculate the amount of “skin” around this red
zone. Once these parameters are computed, we can estimate the
probability for the considered red zone to be part of an eye. Fi-
nally, we correct red eyes using a Gaussian filter.

This paper first introduces the state of the art in red-eye re-
moval, and then our approach is introduced. Next, we describe
further specificities of our web-based application. Finally we

present results and a comparison with the most widespread tools.

State of the art
Most of the currently available tools for red-eye removal

are manual. This is also the case for the software included with
most digital cameras. For instance, the red-eye removal algo-
rithm in the Picture Project application (Nikon) is fully manual
and not very powerful. The zone of the image that is selected
by the user is “automatically” blackened and blurred without any
detection of where in that zone the eye is located. A more power-
ful method is included in Zoom Browser (Canon): the corrected
region looks nicer and the user can choose between automatic
and manual mode. Finally, some image processing applications,
like Adobe Photoshop, Adobe Paintshop, Corel Draw or Pho-
topaint remove the red eyes very nicely, but the detection is done
entirely manually. Adobe Photoshop Elements 2.0 uses an in-
teresting red-eye brush, where the colorization depends on the
luminance of the original pixels. Unfortunately it does not detect
the eyes automatically.

There are only few automatic red-eye removal tools com-
mercially available. One of the most popular applications is Stoik
RedEye Autofix, which uses a proprietary algorithm to detect and
remove the red eyes from a picture. HP has developed an online
tool, RedBot, to remove red eyes from an arbitrary picture [3].

Other approaches for red-eye removal have been proposed
recently by Gasparini and Schettini [4, 5]. Their algorithm starts
by detecting a face using color information (skin detection).
They also use the edges on the intensity channel (detection of
the nose or the eyes for instance) to ensure that the detected re-
gion is an eye. Edges may also be detected using a convolution
operation [1]. Then the algorithm detects the red eye itself using
the roundness and the amount of red in a specific region. Our
approach starts from the red zones because the face detection is
a very difficult task, which additionally increases the sensitivity
of the algorithm (if only part of a face was visible, it would not
be detected). A too high false positive rate (a zone is wrongly
detected as an eye) is the major problem in most of the automatic
correction tools available.

Another approach consists in using machine learning tech-
niques by training a classifier with a large collection of images in
order to make the detection automatic [6]. For each image, the
algorithm improves its model by extracting a feature vector (pos-
itive if an image contains a red eye, or negative otherwise). The
problem with this kind of technique is that images are generally
hard to collect to create a large database. Moreover the machine
learning appears again as a “black box”. An algorithm that com-
bines the machine learning technique with edge detection and
face recognition was presented by Ioffe [7].

Our approach
Our algorithm works as follows: The RGB image is trans-

formed into Lab color space [9] to obtain a more perceptual rep-



resentation for color thresholding [10]. First, bright red pixels in
the image are detected using a thresholding operation. This re-
sults in a binary mask with all the red pixels. We delete objects
smaller than x pixels in order to reduce the computational time.
These mask regions are closed by performing a dilation followed
by an erosion operation. We thus obtain N smoothened regions
αi (0 < i≤ N).

For each region αi we calculate its roundness R (R = 1 for
a perfect circle):

R =
4π×A

P2 , (1)

with A the area and P the perimeter of the region. If the round-
ness R is smaller than a threshold β , we remove the region from
the list of candidate red-eye regions (we assume that the red eye
cannot be too far from a perfect circle). We calculate the number
W of white pixels in a crop around the red zone and the number S
of skin colored pixels in a larger crop around the red zone using
again a thresholding operation in Lab color space. Using R, W
and S we can determine the probability that the zone is an eye:

P(eye) = P(R)P(W )P(S), (2)

with R the roundness of the region and W and S the amounts of
white and “skin”.

We obtain a probability depending on the roundness of the
surface and the number of white pixels and “skin” pixels around
the red zone. If P(eye) > δ (δ is a threshold) and P(W ) > δ2
and P(S) > δ3 (δ2 and δ3 are used to avoid the red spot and
albino rat problems described in the results section), the region
is considered as a red eye. We blacken this region and blur
it using a Gaussian filter. The parameters β , δ , δ2 and δ3
are chosen experimentally in order to make the false positive
and negative rates as small as possible. We have trained an
algorithm on a quite large number of sclera and face images in
order to statistically fix the region of the Lab color space to be
considered.

We will now describe the different steps of our algorithm in
more detail. They are illustrated in Figure 1.

Detection of red, white and “skin” pixels
The RGB image is transformed into Lab color space in or-

der to easily distinguish the red zones using the L, a and b chan-
nels. Using a thresholding operation we obtain a binary mask
with the red zones. At the same time we check whether each
pixel has white or “skin” color and we create two other masks.
This means that we go through the whole image only once to ob-
tain three masks.
For the detection of skin tones, we apply a thresholding opera-
tion on the L, a and b components. From an analysis of many
different skin tone patches, we noticed that the union of all the
Lab regions corresponding to the different types of skin tones
(Caucasian, dark, etc.) forms a single region in the Lab color
space. All skin tones can be detected using a single threshold-
ing operation in Lab space. A pixel is detected as a skin pixel if
its probability is larger than a threshold: P(Skin) > δ3. Figure 2
shows that our algorithm also works for dark skin tones.

Closing the zones
As the mask is not always perfect and as the original image

can contain isolated red pixels, we have to close each zone. The
closing operation is a combination of dilation and erosion, two
morphological operators. As we can see in Figure 3 the dilation

(a) (b)

(c) (d)

(e) (f)

Figure 1. Result using our red-eye removal algorithm. (a) Original image.

(b) Binary mask with red zones. (c) Binary mask after a dilation operation.

(d) Binary mask after an erosion operation. (e) Filtered Binary mask con-

taining only eyes. (f) Corrected image.

(a) (b)

Figure 2. Result using our red-eye removal algorithm on a non-Caucasian

person. (a) Original image. (b) Corrected image.

copies a black pixel to its direct neighbors. In contrast, erosion
whitens all pixels having at least one neighbor that is not black.

Division in zones
After the closing operation, we can analyze each zone and

fill in a table with information related to the zones. We go
through the mask line by line and as soon as the algorithm en-
counters a red pixel it is colored with color i. All the neighbors
of the detected pixel are also iteratively colored with the same
color if they are part of the same zone (there exists a path be-
tween the first encountered pixel and the considered one consist-
ing only of black pixels). When another black pixel is found,
i is incremented, allowing us to obtain a mask having one dis-
tinct color for each zone. This means that we can support up to
224− 2 different zones (from #000001 to #FFFFFE). The result
of the separation of the zones is illustrated in Figure 4. As the
image is scanned, it is quite easy to count the number of pixels
of each zone, to calculate its perimeter (pixels with a neighbor
of different color) and to memorize the minimum and maximum
coordinates along x and y direction for each zone.



(a) (b) (c) (d)

Figure 3. Closing a zone. (a) Original image. (b) Red mask. (c) Dilated

red mask. (d) Eroded red mask.

Figure 4. Colored mask obtained after the separation operation.

Analysis of each zone
By default each red zone is supposed to be an eye. This

means that all the tests performed on these zones aim at rejecting
regions that do not satisfy the criteria.

Area and Perimeter
As it was discussed above, the area and the perimeter are

obtained after the delimitation of the regions. We consider that
a zone formed by less than x pixels (we used x = 10 in our ap-
plication) cannot be an eye or is certainly not visually disturbing.
This permits us again to reduce the computational time.

Roundness
Since we have the area and the perimeter at disposal we

can calculate the roundness using (1). A zone should have a
roundness close to 1 to be an eye.

Amount of skin and white around each zone
We use two different rectangular crops around the red re-

gion in which we simply count the number of white and “skin”
pixels. These calculations are performed on the Boolean table.
We obtain a percentage of white and “skin” in the considered
zone by dividing the number of pixels found by the total area
of the crops. These percentages must exceed a threshold that is
obtained experimentally. If one of the two amounts is below the
threshold, the zone is not an eye. We calculate P(W ) and P(S) as
follows:

P(W ) =
f (Ar)
Aw

∑
i

∑
j

white(i, j) (3)

P(S) =
1
As

∑
i

∑
j

skin(i, j), (4)

where Ar is the area of the red zone, Aw and As are the areas for
the white and the “skin” pixels respectively. As is four times big-
ger than Aw as we double the dimensions along both axes. The
function f (Ar) depends on the area of the red zone. This func-
tion gives us a coefficient that is proportionally larger when the
region is small because in this case the sclera is often hard to de-
tect. When the subject stands in the background, the sclera is not
really white. This implies that only few pixels will be detected.
This coefficient helps us to reduce the false negative rate. This
part of the algorithm removes most of the false positives.

Correction of the original image
After all these steps we know which zones represent red

eyes. Zones that are not detected as eyes are removed from
the mask. Then we simply apply a Gaussian filter on the black
and white mask and replace pixels in the original image by the
ones of the filtered mask. We compute the convolution of an
NxN Gaussian kernel with the mask to obtain smooth grey levels.

Improvements
We added and tested improvements regarding the round-

ness, the crop used to detect the sclera and the way the eye is
corrected.

The roundness
Using (1) we obtain a good approximation of the roundness.

However, if for example an eyelid covers part of the iris, it might
be much lower (e.g., less than 0.75). Also, using our approx-
imation the area and the perimeter of a straight line are equal,
resulting in a roundness R > 1. Thus we add another parameter
η that is computed as follows:

γ =
Δx
Δy

=
max(x)−min(x)
max(y)−min(y)

(5)

η = max

(
γ,

1
γ

)
. (6)

This formula gives us a parameter η > 1, that represents the dis-
tortion of the zone along the axes. To be an eye, η should be
close to 1.
One last case has to be considered. A diagonal line has both a
roundness R > 1 and an axial distortion η = 1. Therefore, we
add a final parameter calculated as follows:

ζ =
A

ΔxΔy
. (7)

If ζ is close to 1, there are many red pixels in the zone, while if
ζ is close to 0, the zone is very thin (a straight line in the worst
case).
To summarize, to be considered as an eye the zone must verify:

red eye =

⎧⎨
⎩

R≥ x1
η ≤ x2
ζ � 0,

(8)

with x1 and x2 experimentally determined.

Using a different crop
We examined different crop regions to detect the white

around the eye. A good idea might be to use a dilated version
of the original zone. For instance if the subject has a half-open
eye the percentage of white in a rectangular region around the
eye might be very low. In contrast, there is no problem to detect
the skin, as the eyelid recovers most of the iris. Using a region
that is a dilation of the red zone, we will calculate the amount of
white in a region with the same shape. If the eye is half-open, the
crop is wide and thin, just like the detected red eye. This would
increase the probability to detect the zone as an eye because the
threshold becomes easier to determine. From the illustration in
Figure 5, we easily see that the proportion of white is more im-
portant using this second cropping approach. Results obtained
with this crop are very similar to those using the rectangular crop
for half-open eyes, because the white pixels are detected in both



(a) (b) (c)

Figure 5. Using different crops for the detection of white and “skin” pixels.

(a) Original shape. (b) Rectangular crop. (c) Dilated original shape.

cases. However the results are worse when the eye is open, be-
cause not all the white pixels are detected. Moreover, this kind
of crop increases the computational time. Therefore, our appli-
cation uses a rectangular crop.

Natural correction of the eye
Unfortunately, in most cases it is physically impossible to

know the original color of the eye with the red shade. It would
be possible if part of the eye was not red but that is rarely the
case. We tried to colorize the eye by modifying color channels
of the mask before it goes through the filter. However, the result
is far from perfect because the eye appears to be very unnatural.
Figure 6 shows examples where the correction is acceptable. Of
course, a grey eye is not very realistic either, but it is visually
much less disturbing.

(a) (b)

(c) (d)

Figure 6. Result using our red-eye removal algorithm for the detection

combined with a manual colorization. The corrections shown here are ac-

ceptable, but in many cases less natural results are obtained. (a) First input

image. (b) Resulting image. (c) Second input image. (d) Resulting image.

Our application
We wanted to implement a web-based interface for our tool,

in order to allow people to correct their images online without
installing any software. In order to account for the slowness of
Java applications, we reduced the complexity of our algorithm
as much as possible. First we minimized the number of times
the image has to be scanned. Then we optimized our code using
the Shark tool to detect which methods put the most load on the
CPU. Using this approach we reduced the processing time by a
factor of 4.

As part of the complexity reduction, we fill in a 3-
dimensional Boolean table while we transform the image into
the Lab color space. For every coordinate (x,y) we set the value
to true when a red pixel is detected. This means that, once this
work is performed, we have two ways to check if a pixel is red
or not (the mask and the Boolean table). At the same time, we
check whether each pixel has white or “skin” color and we fill the
third dimension of the table for each color for all the pixels. This
means that we go through the whole image only once to obtain
a Boolean table in which we can check if a pixel has red, white
or “skin” color. Later calculations are faster using a Boolean ta-
ble (1 bit) than a pixel (3 ∗8 bits). The closing operation is also

performed on the Boolean table. Screen shots of the application
are shown in Figure 1 and Figure 7. The application is available
online at http://ivrgwww.epfl.ch/software/.

Figure 7. Java application.

Results
Our approach was tested on various images using a rectan-

gular crop. The red eyes are easily detected on images where the
subjects are not too far from the camera. An example is shown
in Figure 8. Moreover, the false positive rate is very low, and for

(a) (b) (c)

Figure 8. Result using our red-eye removal algorithm. (a) Original image.

(b) Binary mask after removing small regions and filling holes. (c) Resulting

image after red-eye removal. Rectangles in which the numbers of white and

skin pixels are counted are indicated.

instance albino rats (no skin color) and red spots (no sclera) are
not corrected. Our application is not fooled by images similar to
those in Figure 9. Our algorithm also has no problem with im-
ages in which the red color is predominant.

(a) (b)

Figure 9. (a) Image able to fool the Canon software. (b) Image able to fool

the Stoik software.

Our algorithm successfully corrects red eyes for both Cau-
casian and non-Caucasian people. As part of our study, we also
tested our algorithm on pictures of persons with glasses (see Fig-
ure 10). In this image, the frame of the glasses does not divide



(a) (b)

Figure 10. Result using our red-eye removal algorithm on person with

glasses. (a) Original image.(b) Corrected image.

(a) (b)

(c) (d)

Figure 11. Result using our red-eye removal algorithm on a person with

glasses. (a) Original image. (b) Corrected image. One of the eyes has

not been detected because the red zone is split in two by the frame of the

glasses. (c) Original image. (d) Corrected image with multiple dilation and

erosion operations. Both eyes are now detected, but a part of the lips is also

corrected.

the eye into two parts, and the red eyes are well corrected. If the
frame divides the eye, the results depend on the thickness of the
dividing line. If the frame is thin enough, the closing operation
will merge the 2 zones and the result will be positive. However,
if the frame is too large, the eye will not be detected except if
the two parts of the eye are detected separately as an eye. As
illustrated in Figure 11, the result might be quite arbitrary.

To avoid this problem, we replaced the original closing op-
eration by an extended one. We simply execute the dilation
several times, before launching the erosion the same number of
times. As a result, the probability for a region to be closed in-
creases. Unfortunately, as we can see in Figure 11, the mouth
is also corrected because of this closing operation (two regions,
not detected as eyes, are transformed into one single region de-
tected as an eye). That is the reason why this idea has not been
implemented in the final application.

Comparison
The different thresholds in our algorithm have been selected

manually based on tests on a large set of images. We compared
our program with automatic methods available online, Stoik Red-
Eye Autofix, Canon Zoom Browser V5.1 and Hewlett Packard
Redbot. The test was performed on 100 images of type I and
20 images of type II :

• type I: Images containing red eyes of different kinds (bright
or dark, different eye shapes, different skin tones) to test the

efficiency of the algorithm.
• type II: Images without an eye to measure the robustness

and to try to fool the software.

Results of the different algorithms on 100 test images of type
I and 20 images of type II. A false positive (FP) means that a
zone is wrongly detected as an eye, and a false negative (FN)
represents an eye that is not detected.

100 type I 20 type II
Methods FP FN FP

Stoik RedEye Autofix 22 70 6
Canon ZoomBrowser 14 60 4
Hewlet Packard Redbot 3 65 1
Our Application 9 52 3

As we see in this table, our algorithm performs better than
the other algorithms regarding the false positive rate, except for
HP’s Redbot. This shows that our program is quite hard to fool
with images like those shown in Figure 9. One could argue that a
very low false positive rate is not that important as people usually
do not try to remove red eyes on a picture without any eye. How-
ever, for an automatic algorithm, this is very important because
we do not want other regions of the image to get wrongly de-
tected (and corrected) as an eye. For example for the image used
in Figure 1, the necklace and the clothes might be blackened.

The false negative rate of our approach is better than all
other applications. This shows that all the tests we performed to
ensure that a zone is really an eye do not affect our results. This
is due to the training of our algorithm on a large set of images.

During this comparison we noticed that the errors made by
Stoik RedEye Autofix and Canon Zoom Browser V5.1 occurred
on different images. This shows that the embedded algorithms
are based on different parameters. Stoik RedEye Autofix does not
correct the eye if it is too small whithin the image, for example
when the person stands in the background. Finally, the red eye
is not detected for non-Caucasian people. Canon Zoom Browser
V5.1 also does not correct red eyes for non-Caucasian people and
does not detect small red eyes. Corrections are made with a high
quality and the false positive rate is lower than the Stoik RedEye
Autofix.

Albino rats (no skin color) and red spots (no sclera) are not
corrected using our algorithm. In contrast, the automatic mode of
Canon ZoomBrowser does detect the frog eye from Figure 9(a) as
a human eye and corrects it. Stoik RedEye Autofix also has some
problems with more difficult images, like for instance the pic-
ture shown in Figure 9(b). Using the Stoik tool, the red dots are
wrongly detected as human eyes and corrected. Our algorithm is
not fooled by any of these examples because no skin is detected
around the red dots. From these experiments, we can deduce that
the automatic algorithms from these programs are probably not
based on human skin characteristics like our algorithm.

Hewlett Packard Redbot behaved quite differently from the
two other tested applications. It is extremely robust and some-
times corrects quite difficult images. However, it does not correct
seamingly simple portraits like the image shown in Figure 12.
This shows that Hewlett Packard Redbot is probably based, as
our application, on a large set of quite sensitive tests. The results
using Hewlett Packard Redbot are very good regarding the false
positive rate, and outperform the results obtained with our algo-
rithm. However, the false negative rate is also quite high, mean-
ing that less red eyes are detected than with our algorithm. More-



over the application does not correct red eyes for non-Caucasian
people.

Figure 12. Image not corrected by HP Redbot.

Our algorithm easily corrects red eyes in portraits and does
not make any distinction between Caucasian and non-Caucasian
people. Moreover, the false positive rate is very low since a zone
has to pass a large set of tests to be considered as an eye. If the
sclera cannot be detected, our application cannot correct the eye.
According to our tests, our approach is more accurate and robust
than most existing applications.

Conclusion
We have presented an intuitive and robust algorithm for the

automatic detection and correction of red eyes in digital pictures.
Our method is based on the detection of round red regions, in
combination with sclera and skin pixels. It corrects red eyes for
people with any type of skin tone.

We have tested the accuracy and robustness of our al-
gorithm on a large set of test images, and compared it to
three other automatic red-eye removal applications. The re-
sults show that our algorithm performs better than other ex-
isting algorithms in terms of compromise between false posi-
tive and false negative rate. The software is available online at
http://ivrgwww.epfl.ch/software/.

Further work is oriented towards improving the overall
quality of the correction. It would be interesting to address the
problems encountered for people with glasses, and to study more
natural correction methods.

Acknowledgment
The authors would like to thank Sabine Süsstrunk from the

Images and Visual Representation Group (IVRG) at Ecole Poly-
technique Fédérale de Lausanne (EPFL) for her advice and for
having contributed to this collaborative effort.

References
[1] B. Smolka, K. Czubin, J. Y. Hardeberg, K. N. Plataniotis, M.

Szczepanski, K. Wojciechowski, “Towards Automatic Red Eye Ef-
fect Removal”, Pattern Recognition Letters, vol. 24, no. 11, pp.
1767-1785, 2003.

[2] P. J. Benati, R. T. Gray and P. A. Cosgrove, “Automated Detection
and Correction of Eye Color Defects Due to Flash Illumination”,
US Patent 5,748,764, 1998.

[3] Redbot, Hewlett-Packard Labs, “RedBot automatic red eye correc-
tion”, http://redbot.net/.

[4] Raimondo Schettini, Francesca Gasparini and Fadi Chazli, “A mod-
ular procedure for automatic red eye correction in digital photos”,
Proc. SPIE Color Imaging IX: Processing, Hardcopy, and Applica-
tions, pp. 139-147, vol. 5293, 2004.

[5] F. Gasparini and R. Schettini, “Automatic Redeye Removal for
Smart Enhancement of Photos of Unknown Origin”, Proc. 8th In-

ternational Conference on Visual Information Systems, Lecture
Notes in Computer Science, Vol. 3736, pp. 226-233, 2005.

[6] Luo Huitao, J. Yen and D. Tretter, “An efficient automatic red-
eye detection and correction algorithm”, Proc. International Con-
ference on Pattern Recognition, pp. 883-886, vol. 2, 2004.

[7] Sergey Ioffe, “Red Eye Detection with Machine Learning”, Proc.
IEEE International Conference on Image Processing, pp. 871-874,
vol. 2, 2003.

[8] Rein-Lien Hsu, Mohamed Abdel-Mottaleb and Anil K. Jain, “Face
Detection in Color Images”, IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 24, no. 5, pp. 696-706, 2002.

[9] R. W. G. Hunt, “The Reproduction of Colour in Photography, Print-
ing & Television”, Fountain Press, 5th edition, 1995.

[10] Jon Y. Hardeberg, “Red Eye Removal using Digital Color Image
Processing”, Proc. IS&T Image Processing, Image Quality, Image
Capture Systems (PICS), pp. 283-287, 2001.

Author Biography
Flavien Volken received his BS in communication systems in 2004

from the Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne,
Switzerland. In July 2006 he will obtain a MS degree from the Ecole
Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Johann Terrier received his BS in communication systems in 2004
from the Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne,
Switzerland. In July 2006 he will obtain a MS degree specialized in
information and communication security from the Ecole Polytechnique
Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Patrick Vandewalle received the MS degree in electrical engineering from
Katholieke Universiteit Leuven, Belgium in 2001. From 2001 to 2002,
he worked as a research assistant in the Medical Imaging lab at the
department of electrical engineering (ESAT), K.U.Leuven. He is cur-
rently pursuing a PhD degree in computer, communication and informa-
tion sciences at the Ecole Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland. His research interests are in signal and image
processing, sampling, and digital photography.




