
 

 Predict LCDs’ Real-World Color Performance Based on 
Generic Image Statistics and Gamut Mapping Rules 
Pei-Li Sun, Dept. of Information Management, Shih Hsin University, Taiwan; 
Chia-Yun Lee, Dept. of Graphic Communications & Digital Publishing, Shih Hsin University, Taiwan 

 

Abstract 
We proposed a patch-based metric to predict LCDs’ real-

world color performance. This metric takes 125 RGB patches 
for display and measurement. Generic image statistics, tone 
characteristics, weighted deltaE summary and the correlation 
to the general gamut mapping rules are taken into account in 
our metric. A visual test has been done for using its results to 
optimize the proposed metric. The metric is capable of 
predicting LCDs’ color fidelity on 9 image types individually. It 
would be useful for LCD manufacturers to improve their 
produces. 

Introduction  
The color fidelity of LCDs was commonly estimated by 

standard color patches. However, the correlations between the 
patches and real-word color images are uncertain. Therefore, 
simply measuring the mean color differences between the 
displayed color patches and their standard values could be 
misleading. Previous studies on color gamut mapping 
suggested that the best transformations were typically image-
type dependent.[1] If we regard the color variations of un-
calibrated LCDs as a “standard-to-un-calibrated” LCD gamut 
mapping problem, the performance should be depended on 
image types as well. However, the conventional patch-based 
estimations were unable to report a display’s color 
performances based on image types. Thus, the LCD 
manufacturers miss a great opportunity to make good use of the 
information to improve their products.  

The aim of this study is to derive a metric to predict the 
real-world color performance of a LCD. The basic idea is to 
use RGB based 125 (5x5x5) uniform patches together with 
generic image statistics and tone characteristics to predict 
LCDs’ overall performance on various image types. To this end, 
we have to simulate a calibrated LCD and several un-calibrated 
LCDs for optimizing weighted E∆  metrics. The whole process 
for the optimization was conducted by means of the following 
steps: (1) calibrating a LCD monitor, (2) collecting image-type-
dependent color statistics based on the 125 color coordinates, (3) 
choosing different classes of images as references, (4) 
manipulating their colors intentionally to simulate the color 
variations of various un-calibrated LCDs, (5) asking observers 
to scale the image differences ( V∆ ) between calibrated 
reference images and their color-perturbed counterparts, (6) 
simulating the color errors on the 125 patches and then 
measuring the 125 sets of E∆ . (7) optimizing the weighted 

E∆  metrics to predict the V∆  based on the E∆ s, generic 
image statistics and the correlation to generic gamut mapping 
rules. The details will be introduced in the following sections. 

Generic Image Statistics 

Image Type 

Color statistics for 9 image types were collected. The first 
type of images, Portrait, were obtained by scanning Japanese 
vogue magazines with a GretagMacbeth ProfileMaker Pro 
(Version 4) calibrated UMAX Astra 2500 scanner. The reason 
of scanning printed portrait rather than shooting real persons by 
digital camera is that we think preferred reproduction is more 
important than accurate reproduction for skin tones.  

Four classes of images, Scenery, Night Scenes, Buildings, 
Flowers-and-plants, were selected from a series of royalty free 
image bank CDs. Originally, we tried to summarize image 
statistics of six categories, including Portrait, Scenery, Night 
Scenes, Buildings, Flowers-and-plants, and Computer Graphic 
(CG). We collected 1024 CG image from the 3D image gallery 
of http://www.3dshop.com. The 1024 images in its Fantastic 
category are more correlated to computer game and unrealistic 
images. However, we realized that the CG images must be 
subdivided due to the color variations across the type of images 
are too great. Therefore, we selected the mean and standard 
deviation of L* and C*, pixel frequencies of Red, Yellow, 
Green and Blue domains (separated by 45, 135, 225 and 315 
hue angles with chroma no less than 15) as variables. 
Converting the 8 statistics of 1024 CG images into z scale, then 
performed K-means classifier1 to group four classes of CG 
images. The dominated colors of the four classes, notated as 
CG1, CG2, CG3 and CG4, were gray, blue, red-and-yellow and 
black respectively (see Fig.1). To save the computation cost, 
image statistics were firstly summarized as 51x51x51 bins 3D 
histograms. The histograms quantized images’ L*/a*/b* values 
in 2/4/4 unit intervals respectively. Each image normalized its 
color pixel frequencies into probability before putting into the 
histograms (so the total number is 1). After averaging the 
values of 3D histograms for each type of images, finally we 
obtained nine 51x51x51 bins 3D histograms for nine image 
types respectively. 

 

 
Figure 1. Illustrate the 9 image types used in the study. First row, left to 
right: Portrait, Scenery, Night Scenes, Buildings, Flowers-and-plants. 
Second row: CG1, CG2, CG3 and CG4. 

Color Target 
The proposed study aims to predict the overall 

performance of a display based on weighted color differences 
measured from 125 color patches. We used a 15” Compaq 
FP5315 LCD as our test device. The device was firstly 
calibrated using GretagMacbeth Eye-One Pro spectro-



 

 

radiometer to approximate the sRGB standard (with D65 white 
point and 2.2 gamma).[2] According to its 24-bit RGB signals, 
we divided each 8-bit channel into 6-bit interval (i.e., [0 63 127 
191 255]) to use all combinations to produce our 5x5x5 RGB 
patches. These colors were then converted into LAB space via 
GOG model.[3] The accuracy of forward GOG model was 
estimated by 3x3x3 evenly distributed RGB patches, and the 
resulted mean and maximum CIEDE2000 were 0.86 and 2.92 
respectively. The characterization errors were acceptable for 
our application (i.e., comparing large color differences). We 
finally calculated the pixel probability (denoted as P) within 
20 E∆  distances over the 51x51x51 bins 3D histograms to the 
corresponding (L*,a*,b*) coordinates of the 5x5x5 RGB 
patches. The image-type-dependent data P will be used for 
optimizing the metric later.  

Visual Assessment 

Image Preparation 
As previously mentioned, images were classified into 9 

types and we selected 6 images from each type as reference 
images. Therefore, we have 54 reference images (= 9 types x 6 
images) in total. Each reference image was manipulated by 7 
different transformations (see Fig.2) including: Lightness 
Gamma Function (LGam), Ligtness Sigmodial Function 
(LSigm), Chroma Gamma Function (CGam), Lightness & 
Chroma Gamma Functions (LCGam), Hue Shift (HShift), 
Ambient Flare (AFlare) and Dark Clipping (DClip). They all 
are common color defects in display applications. Where LGam, 
CGam and LCGam are relevant to gamma corrections, LSigm 
varies image contrast, HShift happened when 3 color primaries 
mis-balance, AFlare when black matrix is unable to remove the 
screen’s surface reflections, and DClip (or gray inversion) 
happened when liquid crystal in LCD twisted to wrong 
directions. As we have 6 reference images per image type, 3 
different manipulation levels were applied to the 6 reference 
images. 

 

 
Figure 2. Color manipulation to simulate 7 types of color defects. 

Psychophysical Experiment 
After completing the image preparation, a psychophysical 

experiment was conducted to assess visual image differences 
between reference images to their color-perturbed counterparts 
(see Fig.3). A window program written by MathWork Matlab 
(Version 6.5) was designed for the visual assessment. The 
assessment was performed under dark viewing condition. 18 

observers were asked to stay in the dark laboratory at least 3 
minuses before starting the assessment. A pair of images 
including a reference image on left side and its manipulated 
counterpart on right side was displayed on the previous 
mentioned Compaq LCD in random order. A series of radio 
buttons indicated the image differences from level 1 to level 20 
was shown on the window for choosing. Because each 
reference image has 7 corresponding counterparts, every 
observer has to evaluate 378 pairs (= 9 types x 6 ref. images x 7 
manipulations) of image differences. 

 

 
Figure 3: Color manipulation to simulate calibrated and un-calibrated 
LCDs. Where DClip manipulated colors in RGB space (Case 1), AFlare in 
XYZ space (Case 2) and LGam, LSim, CGam, LCGam and HShift in Lab 
space (Case 3). 

Optimizing Weighted Metrics 

Metric Performance 
The color coordinates (L*,a*,b*) of the original 5x5x5 

color patches were transferred using the 7 manipulation 
functions with the corresponding level indicated in the last 
section. Therefore each manipulated image has one 
corresponding 5x5x5 color patches. Because the aim of this 
study is to predict overall visual differences of a certain type of 
images, we must apply the statistics of the group of images, not 
the statistics of the manipulated image. We applied classified 
image statistics to color differences from original 5x5x5 color 
patches to its manipulated patches for predicting the visual 
differences from its corresponding reference image to its 
manipulated image.  

The mean responses from the 18 observers were regarded 
as visual differences of each pair of images. The mean values 
are denoted as V∆ . The performance of a weighted E∆  
function is determined by the coefficient of variation (CV) 
proposed by Alder et al.[4] Lower CV value indicates a good 
fitting from V∆ s to weighted E∆ s.  

E∆  Metrics 
Eab∆ , 94E∆  and 00E∆  are three major color 

differences formulae for industrial applications. Therefore, we 
must compare their performances. There are 125 color 
differences ( E∆ s) between two sets of color patches 
(calibrated and un-calibrated simulations). A single index 
would be welcome for indicating its performance. We initially 
reported the mean and 95 percentile of the 125 set E∆ s for 
comparison. As can be seen in Table 1, 94E∆  is superior to 

Eab∆  and 00E∆ , and the 95 percentile of the errors are more 
correlated to visual results compared to the mean errors. 

 



 

 

Table 1. The overall performance of E∆  metrics. 
CV Eab∆  94E∆  00E∆  
mean 67.0 61.3 67.6 
95th perc. 67.1 42.7 51.0 

 

Pixel Probability 
The pixel probability, P, indicates the color distributions 

of a certain type of images. The fitting for 94E∆  can be 
improved by applying a logarithmic P statistics (referring to 
Eqn.(1)) especially for CG4 images (see Table 2). We also tried 
loge, log2 and normalized P. But Eqn.(1) is the best in our tests. 
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Error Summarization 
Mean and maximum E∆ s were commonly used for 

reporting color performance of image devices. However, 
referring to Table 2, we found the summation of median and 
maximum Ewt∆  for Eqn.(1) is more correlated to visual image 
differences. The results are similar to previous findings.[6] We 
also found that applied a power of 0.7 to the weighted Ewt∆  
would enhance the CV performance a bit. 

 
Table 2. The performance of different metrics on 9 image types. 

CV Mean 
95th 
Perc. 

median
+ max 

Eqn.3 

final 
metric 

Portrait 43.3  33.6  31.1  25.5  20.3  
Scenery 55.1  43.1  37.3  34.2  24.8  
Night 58.7  40.7  32.7  35.9  22.5  
Building 50.1  37.9  35.1  31.8  25.2  
Flowers 47.1  40.8  38.4  33.0  26.5  
CG1 50.9  41.7  38.6  31.7  32.1  
CG2 38.1  33.8  33.7  32.5  34.5  
CG3 44.7  35.3  33.0  33.0  32.4  
CG4 70.2  54.8  46.3  42.1  33.9  
overall 50.9  40.2  36.2  33.3  28.0  

 
 

Local Color Contrast 
Tone characteristics also play an important role while 

reproducing images. To make a better prediction on visual 
color fidelity, the tone characteristics for both calibrated and 
un-calibrated LCDs were also estimated by the 125 patches to 
check if the continuity and uniformity of the two devices are 
similar. Referring to Fig.4, the 125 colors construct 4x4x4 sub-
cubes in RGB space. Each cube can be defined relatively using 
3 vectors along R, G and B axes respectively. The 
corresponding 3 vectors in LAB space tell us the local color 
contrast. The length of each vector was calculated by 94E∆  
for correlating visual color differences. Other than the 4x4x4x3 
vectors for sub-cubes, we still need 4x4x2x3 vectors to describe 
the local contrast of the rest parts of the gamut surface. The 
lengths of a RGB vector are identical for both calibrated and 
un-calibrated LCDs, but the 94E∆  of the corresponding vector 
pair could be different. If the difference is considerable, we can 
say the two LCDs have different local color contrast. The 
similarity of global tone characteristics denoted as S was 
measured by averaging the above mentioned local differences 

(Eqn.2). Eqn.3 combines the above features and enhances 
overall CV performance to 33.3 (referring to Table 2). 
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Figure 4. 3 vectors to link the color coordinates of neighbor sample 
patches. 

Gamut Mapping Rules 
Color gamut mapping refers to the transformation of an 

image by mapping its colors to fit the gamut of a destination 
medium is a hot issue that is being intensively studied. Various 
kinds of gamut mapping algorithms (GMAs) have been 
proposed in recent years [6]. General rules could be extracted 
by observing their visual results. For instants, color clipping is 
acceptable in high chroma regions [7] but is unpleased in dark 
regions [8]. Sigmoidal curves are favorite when compressing an 
image’s lightness [9]. The tolerance of hue shift is limited [10] 
and the directions of color mapping should point to the gamut 
center [11]. If the LCD’s “standard-to-uncalibrated” color 
variations follow the above rules, we could lower the final 
metric values as the transformations are potentially better than 
some other cases. 

Gamut-Mapped Color Fitting 
SKNEE gamut mapping algorithm (GMA) [9] first 

compresses lightness using a sigmoidal function and then 
compresses towards the hue cusp using a piece-wise-linear knee 
function. The SKNEE algorithm follows not only above rules 
but also been tested by many independent authorities as a 
recommended model for gamut compression. We regarded the 
calibrated and the un-calibrated LCD gamut boundaries as 
source and destination gamuts respectively. The boundaries can 
be constructed by their 125 patches. We first transferred the 
125 patch colors from the calibrated LCD to the destination 
gamut using the SKNEE algorithm (image independent 
version), and then modified the Ewt∆  using Eqn.4. Where 
Lmin is the minimum lightness of the un-calibrated LCD gamut 
and G∆  is the 94E∆

 
color difference between color-mapped 

calibrated patch and its corresponding un-calibrated patch. 
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More Weights for Core Gamut Colors 



 

 

Most of gamut mapping studies suggested that the color 
accuracy of core gamut [12] is more critical than that of near 
gamut boundary colors. Therefore, we gave different weights to 
Eqn. 2 for calculating the variations of local color contrast. We 
found that gave a weighting value of 2 for core gamut (i.e., all 
vectors comprised central 2x2x2 sub-cubes) and 0.5 for all the 
rest will enhance the CV performance. Adding the above two 
features to Eqn.3 as the final metric, the overall CV was 
reduced to 28.0 (referring to Table 2).  

Applications 
Figure 5 shows the workflow of our proposed LCD color 

quality assessment. First, converting the 125 RGB patch values 
into (L*,a*,b*) space and regarding them as calibrated colors. 
Second, displaying the 125 patch on an un-calibrated LCD and 
then measuring their (L*,a*,b*) values. Third, calculating the 
weighted local differences S based on the 4x4x4 cube structure 
and calculating the 125 sets weighted 

94E∆  (refer to Eqn.4) 
using classified image statistics P. Finally, using the combo 
function illustrated in Eqn.3 to predict the real-world color 
performance of the un-calibrated LCD. 

 

 
Figure 5. The workflow of the proposed LCD color quality assessment. 

Conclusions 
The objective of this study is to provide a patch-based 

metric to predict LCDs’ real-world color performance. Generic 
image statistics, tone characteristics, weighted deltaE summary 
and the correlation to the general gamut mapping rules are 
taken into account in our metric. A visual test has been done for 
using its results to optimize the proposed metric. The metric 
performances have been double from simple mean   
measurement (overall CV=67.0) to our proposed final metric 
(overall CV=28.0). The metric is capable of predicting LCDs’ 
color fidelity on 9 image types individually. It would be useful 
for LCD manufacturers to improve their produces. The same 

concept also can be used for estimating other types of display 
and printer media.  
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