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Abstract 
Color accurate acquisition stands as an important topic, 

especially on certain fields where color fidelity is of strategic 
importance. Prominent among these applications is that of 
imaging works of art, on demand for high-quality reproduction. 
The general purpose is to obtain a representation as closed as 
we would have seen the original scene. Fundamentals to color 
imaging are to get color data that are independent face to 
possible evolution in time of acquisition system parameters like 
internal sensor responses. 

This paper deals with problem of spectral sensitivity 
function determination. In the first part, a survey with 
classification of the reconstruction techniques is given. In the 
second part, we present direct and indirect estimation methods 
experimental procedures and results obtained for two cameras: 
a Kodak DCS Pro 14n camera and a PCO 2000 camera by 
Cooke Corporation. Finally, we describe some metric and 
perceptual criteria to evaluate spectral response functions 
reconstruction accuracy. 

Introduction  
Color accurate acquisition stands as an important topic, 

especially on certain fields where color fidelity is of strategic 
importance. Prominent among these applications is that of 
imaging works of art, on demand for high-quality reproduction. 
The general purpose is to obtain a representation as closed as 
we would have seen the original scene. Fundamentals to color 
imaging are to get color data that are independent face to all 
possible evolution in time of acquisition system parameters like 
internal sensor responses. 

The acquired image depends on three factors: illumination 
spectral distribution, object spectral reflectance and imaging 
system characteristics. Thus, in order to obtain independent 
device color data, the acquisition system needs to be 
characterized and calibrated. Device response must be 
linearized, and dark and white noise have to be measured and 
removed from the image. Sensor spectral sensitivity curves can 
then be recovered. 

A classification of the reconstruction techniques can be 
given in three paradigms: 
• Direct estimation, which is based on multiple spectral 

acquisition for the inversion of camera model and needs the 
physical characterization of the object by spectroradiometry 
or multispectral imaging [1], [2]; 

• Indirect reconstruction or learning-based reconstruction, 
where a calibrated color chart and its image are used to 
construct an inverse model with various constraints; 

• Reconstruction by interpolation, where the camera 
responses are interpolated to find an approximation of the 
corresponding response function. 
This paper deals with the problem of spectral sensitivity 

function determination. In the first part, a survey with 
classification of the reconstruction techniques is given. In the 
second part, we present direct and indirect estimation methods 
experimental procedures and obtained results for two cameras: 

a Kodak DCS Pro 14n camera and a PCO 2000 camera by 
Cooke Corporation. Finally, we describe some metric and 
perceptual criteria to evaluate spectral response functions 
reconstruction accuracy. 

Spectral Sensitivity Function Determination 
The image acquisition process model is known as the 

interaction of illumination spectral distribution, object spectral 
reflectance and imaging system characteristics. We denote the 
linearized sensor response for the kth channel (R, G or B, or 
monochrome) by Ck, the linearization function by F, the 
exposure time by e, the sensor noise for the kth channel by bk, 
the sensor spectral sensitivity function for the kth channel Sk(�), 
the spectral repartition of the illumination I(�), the object 
spectral reflectance R(�) and the spectral range [�l - �h]. The 
camera response Ck, for an image pixel, is determined by Eq. 1. 
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where L(�) = I(�)R(�) is the total incident light on sensor. 
Finding Sk(�) from Ck can be achieved by various methods. 
Direct determination and indirect estimations are presented. 

Direct Determination  
Computing sensor spectral sensitivity function Sk(�) for the 

kth channel by direct determination consists in multiple spectral 
acquisition. A white light source passed through a 
monochromator or some optical filters is acquired and, in 
parallel, measurement of its spectral distribution is done with a 
spectroradiometer.  

To recover sensitivity functions, we consider camera 
responses to the measured narrow-band sampling of 
illumination. Based on Hubel works [3], Vora and Farrell [2] 
introduced a method using a monochromator. Let n be the 
number of selected luminous stimuli.  

Assuming a narrow-band spectral illumination Li(�), Eq.1 
can be rewritten as Eq. 2. 
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where �i is the wavelength of the ith incident illumination.  
Sensibility response can then be estimated as Eq. 3. 
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with Ci the ith component of Ck. 



 

Direct measurements can be very accurate [1], [2], but 
requires technical instruments, such as a spectroradiometer and 
a monochromator or some optical interferential filters.  

Indirect Estimation  
Indirect spectral characterization consists in acquiring 

chart with known patches spectral reflectance. From the 
corresponding camera response, spectral sensitivity is recovered 
by inverting the resulting system, solving the problem with 
assumption. A common approach for estimation methods is to 
first compute the linearization function F, the exposure time e 
and the noise b. Let Cp = [c1, c2, …, cp]

t be the channel response 
to p samples of reflectances R = [r1, r2, …, rp]. Eq. 1 can be 
rewritten as Eq. 4. 

SRC t
p = , (4) 

where S (S=[s(�1), s(�2), …, s(�N)]), is the spectral 
sensitivity to recover with N the number of unknown values of 
this spectral sensitivity vector. 

Without Constraint 
The system could be obtained by using Moore-Penrose 

pseudo-inverse method (PI method) [4], which consists in 
minimising the mean square error, considering no noise. 
Sensitivity can then be obtained by Eq. 5. 
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where (Rt)-denotes the Moore-Penrose pseudo-inverse of 
(Rt). But, due to noise when considering real sensor, the 
singular value decomposition of R shows that only few singular 
values are significant. The estimation will then be very 
sensitive even to little noise. Barnard [1], Quan [5], Hubel [3], 
Sharma and Trussell [6] have computed it and confirmed the 
poor results of this method.  

Hardeberg [4] considered this singular value 
decomposition by solving the system in preserving only 
principal eigenvectors corresponding to significant singular 
values (we will then refer to this method as PE estimation). The 
decomposition of R (p x n) is RT=UWVT, with U (p x p) and V 
(n x n) unitary matrices and W (p x n) a diagonal matrix, in 
which wi are the singular values, for i = 1… r (r<R), with R the 
rank of the matrix Rt ( )]min(R[ p,n≤ ). 

By only taking into account these first r singular values, 
Eq. (5) can be expressed as Eq. 6. 

p
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The r values giving the most accurate result are kept.  
This solution is less sensitive to noise than simple PI 

method. But as expressed by Quan [5], great noise forces less 
eigenvectors to be used. Moreover, the recovered solution can 
present some negative parts, which do not hold in case of 
physical sensor. To answer this problem, Hardeberg [4] has 
proposed to select a set of the most significant reflectance 
samples: starting with a small number of reflectance samples, 
chosen according to their spectral variance, more reflectance 
samples are added in order to maximize the volume defined by 
the vector space covered by the selected spectra. 

These methods show limited results. Thus including some 
sensor physical constraints to the system resolution is required. 

With Constraints 
Various constraints can be applied: smoothness, positivity, 

boundedness or modality. 

Pratt and Mancill [7] suggested two methods, Wiener 
estimation and smoothing estimation. Hubel [3] computed the 
first one: results seem to be more accurate, but some negative 
parts in the function can still remain. The second method, based 
on a smoothing matrix M, is given by Eq. 7. 

p
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Another technique has been introduced by Paulus [8], 
which gave a smooth solution by linear approximation, using a 
second derivative matrix as smoothing matrix. Nevertheless, 
results highly depend on applied smoothness weight. 

Sharma and Trussell [6] added other constraints with 
POCS (Projection Onto Convex Set) estimation, which are 
positivity and boundedness constraints. Based on each of these 
constraints, a feasible set of the sensitivity functions can be 
determined and particularly one solution of this set. It consists 
in an iterative method, and therefore its solution is strongly 
dependent on the initial chosen point to solve the problem. The 
solution respects all constraints, but might not be the most 
accurate one [5].  

Based on the same type of resolution, Alsam and 
Finlayson [9] introduced a method to recover the whole set of 
feasible functions, by recovering spectral sensitivity with 
uncertainty. The final result corresponds to the mean of the set, 
for which the computed variance is indicated. 

The quadratic programming solving, proposed by 
Finlayson, et al [10], takes into account the modality of the 
retrieved functions. Quan [5] found that applying this method 
leads to more accurate results. 

Quan [5] presented an iterative multiscale basis functions 
estimation method. Retrieved function given by Eq. 8 is 
considered as a weighted sum of basis spectral functions, which 
are chosen as Gaussian functions. 
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where n, the number of basis functions, determines the 
degree of freedom in the model. With this method, obtained 
functions are closed to the real functions. Finlayson [10] 
exploited a similar approach with Fourier basis functions. 
Obtained results show that this method performs well in all 
cases. 

Other estimation techniques have been introduced: 
according to Quan [5], linear programming approach (König 
and Herzog [11]) gives close performance from that proposed 
by Finlayson [10], and approach by parameterizing the 
sensitivity functions (Thomson and Westland [12]) give less 
accurate results if no a priori information is available.  

However, when considering modality, unimodality or 
bimodality (often applied) do not always correspond to physical 
sensor sensitivity functions; thus modality constraint has to be 
used carefully. 

All these estimation techniques lead to variable results: 
obtained spectral sensitivity will strongly depend on reflectance 
samples, on applied method, and especially on added 
constraints. Particularly, some approaches will give very 
approximate results if constraints, like smoothness or modality, 
are not used carefully. 

Experimental Results 
Spectral sensitivities functions estimation results are 

presented for two cameras: a RGB Kodak DCS Pro 14n camera, 
with 12 bits of dynamic and a spatial resolution of 4500x3000 



 

pixels; a monochrome PCO 2000 camera by Cooke 
Corporation, of 14bits of dynamic, and a spatial resolution of 
2048x2048 pixels, associated with a CRI Macro-Color RGB 
liquid crystal filter for the rest of the study. 

Direct Determination 
First considering direct estimation, Vora and Farrell’s 

approach was the starting point for our own study on both 
cameras. Instead of using a monochromator, we used optical 
interferential filters, of 10nm of bandwidth, from 400 to 
700nm, for which we characterized the spectral transmittance. 
Sensitivity curves are recovered, by averaging a central 
260x120 pixels area, where a white patch is imaged. The 
resulting computed spectral sensitivity functions are given in 
Fig. 1. 

With this kind of direct estimation method, positivity will 
be satisfied for sure, leading to results in agreement with sensor 
physical characteristics. We also underline the non uni-modality 
of resulting curves, for both cameras. This remark must be 
taken into account when applying constraints on estimation 
sensitivity solving. 

Measurements have been done under two different 
illuminations (Fig. 2). Results denote the illumination spectral 
distribution importance [4]: from 400 to 420nm, only the noise 
has been characterized, since the illumination provided no 
energy for those wavelengths. Thus the monochrome recovered 
function for PCO camera can not be correctly determined. 
When using D65 type illumination, better results are obtained 
for PCO (Fig. 1c), and associating it with the CRI Macro-Color 
RGB filter, we obtain sensitivities given in Fig. 1d. These last 
curves for PCO will be used for the rest of this study.  

 

 
Figure 1. (a) Kodak RGB sensitivity functions, (b) PCO monochrome 

sensitivity function with A illumination, (c) monochrome sensitivity of PCO 

with D65 illumination and (d) color sensitivity of PCO+RGB filter with D65 

 
Figure 2. (a) illumination for Kodak (D65), (b) illumination for PCO (A) 

 
Figure 3. Estimation with wide band spectra, with results for KODAK 

camera and PCO camera: (a and b) Pseudo-Inverse, (c and d) PE, (e 

and f) Paulus and (g and h) Paulus + PE estimations 

Indirect Estimation 
Results for some of the presented indirect estimation 

methods from a great number of wide band spectra patches 
(from Gretag Macbeth DC Colour Chart) are presented.  

In this purpose, patches RGB pixel values have been 
averaged and their corresponding spectral reflectance measured 
with a Minolta CS-1000 spectroradiometer, from 380 to 780nm 
every 5nm.  

All potential lighting non-uniformities have been corrected 
according to luminance profile of the acquisition plan. 

We applied PI and PE estimations, Paulus and Paulus + PE 
methods, on both cameras under various illuminant types, such 
as illuminants A and D65. Our results underline that, when 
considering indirect estimation techniques, not only lighting 
must cover the whole spectral range, but also, no peak must be 
present in its distribution.  

Obtained curves under illuminant A are given in Fig. 3 for 
both cameras, A being an even illumination. 

Results highly depend on applied methods, and show quite 
different sensitivities.  

We compare resulting functions with the ones obtained 
with direct determination method, as its accuracy has been 
demonstrated [1], [2]. 

 
We can observe the poor result of PI method. All other 

methods show some negative parts that can be really marked 



 

(with PE method for example). Moreover, poorness of our 
lighting for short wavelengths leads to a low SNR in this 
spectral range. Thus, when smoothing is used, methods have 
difficulties to recover curve for these wavelengths, and so 
specifically for blue channel. 

PE method gives the most accurate results (compared to 
direct measurement method) for Kodak, and each estimation 
methods fails for PCO sensitivity recovering. 

Results Accuracy 
In order to validate recovered functions, their accuracy 

must be qualified, by refining precedent results analysis.  

))()()(( bLSieF jjijk +∆∑ λλλ  (9) 

Eq. 9 is used to compute response of channel k with 
estimated spectral sensitivity functions of Kodak and PCO 
cameras.  

Mean and Max RGB errors  
From estimated (Cestk) and real (Crealk) RGB values, we 

computed RGB errors for M patches (M>P) (M=522 for PCO 
and 138 for Kodak). The absolute mean error for each channel 
k is obtained from Eq. 10. 
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where error is expressed as a percentage of maximum 
sensor dynamic d (216 for PCO and 212 for Kodak). Mean 
relative error for each channel k is computed by Eq. 11. 
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For each of those errors, we noted down maximum value 
for the three channels. 

Table 1 gives computed errors for each direct or indirect 
used method, for each channel and the global three channels. If 
computed errors are very low, they confirm the validity of 
results.  

As observed previously, the low dimensionality of 
reflectance spectra leads to deficient results for PI method, 
when considering RGB errors. Selecting only relevant 
eigenvectors and smoothing resulting curves (with Paulus and 
PE methods) greatly improve results accuracy and even give 
more accurate results for Kodak camera, with errors equivalent 
to those obtained from direct determination. In a general case, 
mean relative error is greater for the blue channel, a result 
which confirms previous analysis. 

Repartition of RGB errors 
Further analysis can be made to select the most accurate 

recovered functions. It is the aim of Fig. 4 which compares the 
predicted values to the real measurements for two tested 
methods, direct measurement and Paulus methods, for Kodak 
camera. More the plotted values are dispersed from the 
theoretical straight line, less accurate the estimation.  

Error bar graphs, plotted in Fig. 5, denote the Gaussian 
distribution of the absolute and relative errors. A narrow 
Gaussian curve associated with low maximum error values 
indicates a rather accurate estimation.  

 
Figure 4. Estimated RGB values plotted versus read RGB values on 

sensor, for KODAK sensitivity estimation, by (a) direct measurement 

method and (b) Paulus method 

Table 1 Error in sensitivity estimation for PCO and KODAK. 
Errors are calculated by projection of 522 patches for PCO 
and 138 for KODAK (versus respectively 180 and 90 for 
estimation).  

Mean Max 
∆R ∆G ∆B ∆RGB ∆RGB 

Errors 

Absolute (% of max dynamic) 

Direct method 5.1 4.9 3.2 4.4 25.5(g) 
PI 121 133 91 115 975(g) 
PE 7.7 4.5 3.0 5.1 33(r) 
Paulus 7.4 4.4 2.5 4.8 32(r) 

PCO 

Paulus+PE 7.9 4.4 2.4 4.9 30(r) 
Direct method 0.7 0.4 0.2 0.5 3.4(r) 
PI 22.7 22.4 12.2 19.1 71(r) 
PE 0.5 0.5 0.2 0.4 2.3(g) 
Paulus 0.4 0.3 0.2 0.3 1.9(r) 

KODAK 

Paulus+PE 0.4 0.3 0.3 0.3 2.1(r) 

 Relative (% of pixel value) 
Direct method 16.6 21.3 21.6 19.8 80(g) 
PI 350 428 395 391 2089(g) 
PE 21.5 22.6 25.3 23.1 86(g) 
Paulus 21.3 20.4 22.4 21.4 96(g) 

PCO 

Paulus+PE 22.4 19.7 21.8 21.3 103(r) 
Direct method 3.3 3.0 3.3 3.2 15.4(b) 
PI 124 141 177 147 1010(b) 
PE 2.9 3.1 3.6 3.2 11.2(r) 
Paulus 2.5 2.9 3.2 2.9 11.0(r) 

KODAK 

Paulus+PE 2.7 2.8 3.3 2.9 11.9(r) 
 
Considering both results from Table 1 and graphs of Fig.4 

and Fig.5 can lead us to select the method giving the best 
results, when observing RGB errors. 

Relative error distribution is less narrow than absolute 
error. This is due to the minimization process applied on 
absolute rather than relative error. Comparison of two methods 
can be made on those relative graphics, as relative comparison 
of color is closer to our own visual color perception. Here, by 
considering these errors, Paulus method seems to give better 
sensitivity curves than direct determination method, as 
repartition is narrower (with greater peaks centered on 0% 
error). Error standard deviation value of 4.0% against 8.7% 
confirms this observation. But a complete accuracy analysis has 
also to take into account retrieved functions plausibility. 



 

 
Figure 5. Repartition of errors on RGB KODAK sensitivity estimation. 

Absolute and relative error bar graphs, for direct measurement method, 

respectively (a) and (c), and for Paulus method, respectively (b) and (d) 

Further, a visual reproduction of estimated patches values 
compared to real measurements can be done. It concerns 
perceptual error (for example in L*a*b* colorspace) and not 
RGB error anymore. This perceived variation will depend on 
observers and graphic reproduction devices such as display or 
printer. 

Conclusion on results 
Having computed all these results, different points must be 

considered in order to give correct verdict: 
• Plausibility of sensor sensitivity values (such as respect of 

positivity, and a maximum modality of two or three), 
• Mean and max absolute error for each channel and for the 

global sensor, 
• Mean and max relative error for each channel and for the 

global sensor,  
• Repartition of error: does it follow or not a narrow 

Gaussian distribution?  
• Visualisation of perceptual error, keeping in mind that it 

will depend on reproduction device. 
Regarding all obtained results, for both cameras, direct 

measurement give the most accurate results. 

Discussion 
We have briefly reviewed some estimation techniques to 

recover sensor spectral sensitivity functions. We underlined that 
some applied constraints like constraints of modality and 
smoothness require care. Depending on applied methods for 
two different cameras, we obtained curves satisfying or not 
these sensor physical constraints. Some direct measurements 
were also computed and obtained results satisfy plausibility for 
retrieved sensitivity functions. 

For both kinds of methods we have qualified their 
accuracy, by means of absolute and relative RGB errors 
computation. Error values and graphical analysis of their 

repartition lead us to improve our verdict on the accuracy of 
retrieved sensitivity curves. 

Including some constraints for the processed estimation 
methods could allow a better accuracy, particularly positivity 
constraint. Another way to improve final curves would be to 
solve our inverse problem by minimizing relative error rather 
than absolute error, as human perception of colour is more 
relative than absolute. 

For further works, in order to refine results for method 
accuracy evaluation, more patches could be used in error 
computation. 
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