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Abstract 
We present a computational model to predict perceptual 

coarseness from an image. The model was based on the 
hypothesis that a model for predicting perceptual coarseness 
should be motivated by human visual system. We found that the 
amplitude of the Fourier transform of an image captures 
information of coarseness. Furthermore, an analysis of Fourier 
amplitudes in terms of the human contrast-sensitivity function 
(CSF) leads to a metric that can predict perceptual coarseness. 
Model performance was proved by comparing the perceptual 
coarseness that was predicted by the model from images of 
metallic paint panels and the psychophysical data which was 
obtained by a visual assessment using the physical panels.  

 

Introduction 
Image texture analysis has been studied over the last few 

decades. Many image-texture analysis methods in the 
computing domain are based on various statistical analyses of 
the image itself with little attention given to the perception of 
texture [1]. However, psychophysical research demonstrates 
that the human visual system processes images in a way that is 
consistent with a spatial-frequency analysis of an image [2]. 
The contrast-sensitivity function (CSF) is a well established 
characteristic of the human visual system which describes the 
relationship between spatial frequency and contrast [3]. The 
contrast sensitivity threshold is the lowest contrast detectable at 
a given spatial frequency, and CSF defines differences in 
contrast sensitivity (sensitivity being inversely related to 
threshold) as a function of spatial frequency. It also has been 
used for analyzing perceptual differences in quality; colour 
difference and sharpness [4,5,6]. The square-root integral 
(SQRI) metric has been proposed by Barten [7] to evaluate the 
effect of the resolution on perceived image quality taking into 
account the CSF as shown in Equation (1). 
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where u is the spatial frequency in cycle/degree, umax is the 
maximum spatial frequency to be displayed on a monitor,  
M(u) is the modulation threshold function of the display and 
Mt(u) is the modulation threshold function of the eye (CSF is 
the inverse of the modulation threshold function of the eye). 
This method can describe perceptual image differences 
according to changes in viewing distance and the average 
luminance of an image, etc. However, SQRI is independent of 
the actual image spatial-frequency data.  

The objective of this study is to develop a computational 
model to predict perceptual texture from a digital image. As a 
target attribute for this model, coarseness was selected which 
was one of the essential terms for perceptual texture. The 
model should take in account the human visual system to 

analyse an image and should make a quantitative match with 
psychophysical data.  

The coarseness model was based on the hypothesis that the 
amplitude in the Fourier transform of an image is a measure of 
the amount of contrast in the image and that the amount of 
contrast is correlated closely with perceptual coarseness. The 
model also assumed that CSF can be used to appropriately 
weight the importance of the contrast at the each spatial 
frequency. In order to test the model, a psychophysical 
experiment was carried out to scale the perceptual coarseness of 
metallic paint panels as samples.  

 

Psychophysical Data & Analysis  
Psychophysical data to be fitted for a coarseness model 

were obtained by visual assessment. A total of 10 observers (4 
female and 6 male) with the normal colour participated in the 
experiment to scale perceptual coarseness. Metallic paint 
panels, having various coarseness levels and colours, were used 
as samples. Totally, there were 156 panels including 6 grey, 50 
purple, 50 green and 50 blue panels. A DigiEye® viewing 
cabinet was used for this experiment, which incorporates  
diffuse light from two light sources (CIE illuminant D65 
simulators) covered by diffusing filters and a flat base to 
present samples as shown in Figure 1 [8]. The reason of using 
the diffused light is to avoid any specular reflection or gloss 
which could distract observers during the coarseness 
assessment. The samples were presented on the bottom of the 
cabinet. An observer looked down onto the samples from the 
viewing window. The distance from the observer’s eye to the 
sample was about 54cm. Categorical judgment [9] was applied 
to scale the perceived coarseness. Two metallic paint panels 
were presented for each trial in the viewing cabinet. One was a 
reference sample and the other was a test sample. One of 6 grey 
colour panels which had a middle coarseness level was used as 
a reference sample. Observer was asked to assign a category for 
a test sample comparing with the reference sample, whose 
category was 5, according to the observer’s perception in terms 
of coarseness on a 1-9 scale as shown in Table 1. All samples 
were presented in a random order. To check the repeatability, 
each observer carried out the assessment twice. A total of 3100 
(10 observers × 2 sessions × 155 samples) categorical 
judgments were made. Repeatability (intra-observer agreement) 
was investigated by calculating coefficient of determination (R-
squared value) between the results of each observer’s first 
session and second session and was found to be 0.69. Observer 
accuracy (inter-observer agreement) between each observer’s 
data and the average of all observers’ data was found to be 0.82 
in R-squared values. The arithmetic mean of each observer’s 
data was used as a measure of the perceptual coarseness for 
each sample. 



 

Table 1: 1-9 categories used for the visual assessment 

Category 1 Extremely Fine 
Category 2 Very much Fine 
Category 3 Moderately Fine 
Category 4 Slightly Fine 
Category 5 Reference Sample 
Category 6 Slightly Coarse 
Category 7 Moderately Coarse 
Category 8 Very much Coarse 
Category 9 Extremely Coarse 

 

 

 
Figure 1. Schematic diagram of a DigiEye® Viewing Cabinet (top). 
Samples are placed on the base. Two light sources are positioned at the 
2 bottom corners at each side and both emit light to the walls. The top 
corners have curved surfaces to reflect light uniformly onto the sample. 
An observer looked down the sample from the viewing window. An 
illustration of samples’ arrangement and an observer’s viewing field 
(bottom). 

Model Design  
We outline our model in this section. First the necessary 

data for the model are given. Successively, each stage of the 
model is introduced. 

 

Test Images & Data 
A model was developed to predict the perceptual 

coarseness from an image of an object captured by a digital 
camera. Images of the samples (metallic paint panels) used for 
the visual assessment were captured in the DigiEye® viewing 

cabinet. Therefore, the capturing condition was consistent with 
the visual assessment. The camera was located at the viewing 
window where the observer’s eyes were as illustrated in Figure 
1. A tele-spectroradiometer (TSR) was used to measure the 
tristimulus values for each sample. It was also located at the 
viewing window of the DigiEye® viewing cabinet. In this 
experiment, the DigiEye® viewing cabinet was always used all 
the visual assessment, the image capturing and the 
measurement by the TSR, because any viewing geometry 
difference could seriously affect the appearance of the metallic 
paint panels. In this work, XYZ values of each pixel of each 
sample image were also obtained by transforming the camera 
RGB values using a camera characterisation model, i.e. a 
polynomial model using the least squares method [10]. An 
example of a linear mapping method between camera RGB 
values and XYZ values is shown as Equation (2). This linear 
transformation is a special case of the set of polynomial 
transforms. Practically, higher order (non-linear) 
transformations were used. 
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where the coefficients a11~ a33 were empirically determined.  

 Usually, a standard chart such as GretagMacbeth Color 
Checker Digital Chart or a set of Munsell colours is often used 
as training data to determine the coefficients. However, in this 
study, the average RGB values of the sample images and the 
corresponding measured XYZ values of the physical samples 
(the metallic paint panels) were used as a training data set to 
derive the model. Since surface material differences could 
affect the performance of the camera characterisation model, a 
model derived from a chart which has a matt surface may not 
be applicable for other samples having a glossy surface such 
metallic paints.  

The input parameters needed for a computational 
coarseness model were the sample size (8×8 cm2), the viewing 
distance (54 cm) and the luminance of the reference white tile 
(167.8 cd/m2) corresponding to the viewing conditions in the 
visual assessments. 

 

Channel Selection 
After the transform from RGB values to XYZ values was 

completed, the XYZ values were encoded into the cone-
excitation space LMS corresponding to the long-(L), middle-
(M) and short-(S) wavelength responses in the cone spectral 
sensitivity of human visual system, using the Stockman, 
MacLeod and Johnson transformation [11]. The image was 
then separated into three channels, i.e. the luminance channel, 
the red-green channel and the yellow-blue channel according to 
a chromaticity coordinate system proposed by MacLeod and 
Boynton [12] as shown in below. 

 

Luminance Channel      = L+M 

Red – Green Channel   = L / (L+M) 

Yellow - Blue Channel = S / (L+M) 
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Before applying the Fourier transform to the image, the 
mean value for each channel was subtracted from every pixel 
value in each channel respectively, in order that the DC 
component in the Fourier transform was zero. A two-
dimensional discrete Fourier transform (DFT) was applied to 
each of the three channels (luminance, red-green and yellow-
blue) to transfer the spatial domain into the frequency domain. 
Figure 2 shows an original image of a sample and its Fourier 
spectrum images for the three channels. These images indicate 
that there is little Fourier energy in either chromatic channels 
and that there is huge amount of Fourier energy in the 
luminance channel. This suggests that, for our samples, the 
chromatic channels have little contribution to perceptual 
coarseness. Therefore, this study focuses only on the luminance 
channel for modelling coarseness. 

 

Figure 2. An original image of a metallic paint panel (top left) and its 
Fourier spectrum images for luminance (top right) and chromatic 
channels: red-green channel (bottom left) and yellow-blue channel 
(bottom right).  Note that the DC component is in the centre of each 
Fourier spectrum image and that spatial frequency increase from the 
centre to outwards.   

Applying CSF 
To incorporate properties of the human visual system into 

the model, the Fourier energy was weighted using the CSF [13] 
as shown in Equation (3), and the sum of these weighted values 
was computed.  
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where u is the spatial frequency in cycle/degree,  L is the 
luminance of the stimulus in units of cd/m2, d measures how 
chromatic the image is, (x, y) is the average chromaticity co-
ordinate derived from the XYZ values for an sample image and 
(xwhite, ywhite) is the white point. 

Finally, the sum of the weighted values was normalised 
using the mean value of the luminance channel according to the 
human contrast sensitivity, in which the ratio of the increment 
threshold to the background intensity is said to be a constant. 
This can be illustrated by ∆P/P = K where ∆P represents the 
difference of threshold; P is intensity of the background; K is a 
constant.  This equation is in the form same as Weber’s Law 
[2]. 

This phenomenon can be clearly recognized by comparing 
the Fourier energy weighted by the CSF and the mean value of 
the luminance channel as shown in Figure 3. The 4 points in 
Figure 3 correspond to the 4 sample images, which have the 
perceptual coarseness values of 5.15-5.25 from the 
psychophysical experiment (in a 1-9 scale). According to the 
psychophysical data, these images are expected to be similar in 
appearance. However, it is evidenced that, as shown in Figure 
3, the Fourier energy weighted by the CSF is much greater for 
the bright sample images. Therefore, this effect was included in 
the model by normalising the Fourier energy using the mean 
value of luminance channel for each image.  It can be expressed 
by Equation (4). 
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where u is the spatial frequency in cycle/degree, umax is the 
maximum spatial frequency containing in an image, CSF(u) is 
the CSF given in Equation (3), E(u) is the Fourier energy, I is 
the mean value of the luminance channel and S is the size of an 
image in pixel units. 
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Figure 3. An example of the relationship between Fourier energy and the 
brightness of sample images having similar perceptual coarseness (5.15 
– 5.25 scale values obtained from the visual assessment).  
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Model Performance  
The performance of the model was evaluated by 

comparing the perceptual coarseness that was predicted by the 
model (NM) from the sample images with the psychophysical 
data from the visual assessing using physical samples (Figure 
4). It is notes that the NM model predictions in Figure 4 were 
normalised using the maximum. The comparison showed a 
non-linear relationship between the model prediction and the 
psychophysical data. Therefore, the model was extended to 
incorporate a final stage of linearisation.   

  
Figure 4. Comparison between the predicted coarseness by the model 
(NM) and the visual result for all samples.  

Linearisation  
The model (NM) was derived based on the spatial 

frequency information and the characteristics of the human 
visual system. At this stage, it tried to establish a linear 
relationship between the previous model’s (NM) prediction and 
the psychophysical data. This was achieved by taking the 
logarithm of the model (NM) resulting in the linearised 
coarseness model (CM) given in Equation (5).     

  

)(log NMCM =  (5) 

 
 

The performance of linearisation was given in Figure 5 
(the CM model predictions were normalised using the 
maximum). An R-squared value of 0.91 for all the samples 
indicates the excellent relationship between the model 
prediction and the psychophysical data. In Figure 6, the 
performances of the linearised model (CM) for grey, purple, 
green and blue samples are given individually. The R-squared 
values are 0.96, 0.80, 0.95 and 0.79 for the grey, purple, green 
and blue sample respectively. The grey samples result shows 
the best performance. It is because that there were only 6 grey 
samples and also they have clearly large perceived coarseness 
differences comparing with the other colours. Overall, the 
model shows good predictions for not only the grey samples 

but also for the coloured samples, even though only the 
luminance channel of the images was used.    
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Figure 5. Comparison between the linearised model (CM) prediction and 
the visual result for all samples.  

 

 
Figure 6. Comparison between the linearised model (CM) prediction and 
the visual result for grey, purple, green and blue samples individually. 

Conclusion 
In this paper, a computational model for predicting the 

perceptual coarseness was developed which not only analyses 
images, but also takes into account the human visual system 
which hasn’t been included in most conventional image texture 
analysis methods. Figure 5 proves that the model can predict 
the perceptual coarseness of coloured samples as well as grey 
samples. It indicates that the luminance channel alone is 



 

sufficient for prediction coarseness. While the performance of 
the model was proved to be robust for metallic paint panels, 
further work are necessary to test the generality of the model 
using various types of texture and materials, and also the model 
is needed to be investigate the ability for changing in viewing 
distance which affect to appearance of texture. 
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