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Abstract
This paper deals with the potential of spatial gamut map-

ping methods as a complement to global gamut mapping algo-
rithms. The main goal is to recover the original local contrast
between neighboring pixels in addition to the usual optimiza-
tion of preserving lightness, saturation and global contrast. As
a typical representative for such a spatial mapping concept, we
study unsharp masking applied to an image of the difference of
the original and the result of a given gamut mapping algorithm.
Thereby an edge preserving smoothing algorithm is used to avoid
halo artefacts. In our psychophysical experiments every consid-
ered gamut mapping algorithm shows a significant gain in pref-
erence by our local contrast approach. The presented method
can be seen as an additional feature towards an image-to-device
gamut mapping design.

Introduction
The adaption of a specified color image to device limitations

is fundamental for digital color reproduction. For this process –
called gamut mapping – a wide variety of techniques were pro-
posed. An overview of the work in this field was summarized by
Morovic [1]. Recently, in order to improve the comparability of
the different approaches, the technical committee of CIE worked
out and published corresponding guidelines [2]. We are particu-
larly interested in combining different gamut mapping concepts
in a modular way and determining the visual gain induced by
specific components.

At first we would like to setup our notation. The term
‘gamut mapping’ is used in a general sense, and means the adap-
tion of a specified color image to device limitation. In a more re-
stricted sense, ‘gamut mapping’ is often understood as a point-to-
point mapping of color vectors from a source to a device gamut.
In this paper we prefer the term ‘global gamut mapping’ for this
interpretation. ‘Global gamut mapping’ again can be categorized
in ’device-to-device’ and ’image-to-device’ techniques, depend-
ing on whether an image independent source gamut is used or
not. In addition, the term ‘spatial gamut mapping’ is used for
strategies where the color mapping depends on the spatial neigh-
borhood of a pixel and is not only covered by a global color trans-
formation.

Most of todays gamut mapping algorithms are ‘global’ and
‘device-to-device’ in this sense [3, 4, 5, 6], in particular in con-
nection with ICC color management. But recently ‘image-to-
device’ concepts begin to emerge [7, 8, 9, 10]. The basic idea
is to determine the shape and size of the source gamut by image
statistics. Although these algorithms are still ‘global’, they are
generally expected to perform better in color rendering. How-
ever these algorithms can not take spatial neighborhood effects
into account, because they are restricted to point-to-point color
transformations. A further class of gamut mapping algorithms
use spatial gamut mapping techniques [11, 12, 13, 14]. For such
algorithms, two identically colored pixels might map to differ-
ent colors in the output image depending on their local neigh-
borhood. Local techniques of this kind are well-established for

image rendering of high dynamic range images [15, 16, 17, 18].
This operation, known as ‘tone mapping’ provides in fact the
same functionality for image rendering as ‘gamut mapping’ does
for the image reproduction process. The theoretical foundation
of local techniques is the Retinex theory [19]. Its potential for an
application to gamut mapping was shown with experiments us-
ing Mondrian-type images [13]. The results question the use of
minimal overall colorimetric distance as a sole metric to design
and judge gamut mapping algorithms and indicate a high poten-
tial for improvements using spatial methods for gamut mapping
algorithms. The modeling of dodging and burning of images is
a further approach to deal with local contrast in high dynamic
images. This can be realized by constructing an image mask and
combining it with the orignal image [20].

The method presented here is designed as a component
among others within a gamut mapping concept. Special attention
has been taken to avoid halo artefacts. A major challenge is the
optimal balance between global and local contrast preservation.
Although our approach is related to the Retinex theory, we do not
explicitly describe a corresponding visual model. Instead, we de-
veloped a robust algorithm designed for the multitude of images
in a typical color management work-flow. The component struc-
ture allows the subsequent improvement of existing global gamut
mappings, including ’image-to-device’ solutions.

The paper is organized as follows. In the next section the
methodology of the used spatial mapping is described. In the
following section the results of a psycho-visual experiment are
presented evaluating the gain in preference if spatial gamut map-
ping is added to known gamut mapping algorithms. The last sec-
tion gives concluding remarks.

Methodology
Basic Model

At first we introduce a simple model for a spatial gamut
mapping method. The basic idea is to recover the local contrast
of the original image as good as possible. We use an unsharp
masking technique to accomplish this task. It is assumed that the
working color space is visually approximately equidistant, such
as CIELAB, MLab or DIN6164. In contrast to other applications
using spatial gamut mapping, we apply the masking to all three
coordinates and not only to the luminance coordinate. We as-
sume that the image is already rendered for a specific color space
within its gamut, such as sRGB. All image enhancement, such as
color balance, tone mapping, sharpening are made. The task we
want to accomplish is to map the image into a different, usually
smaller gamut.

Let IO be an original image, and IM the mapped image, then
we understand IM as function of IO:

IM GMAx IO (1)

Thereby GMAx may be any gamut mapping algorithm, usually
a global one. In a first step a smoothed difference image IS is
calculated by the convolution of the difference image ID with a



Gaussian smoothing filter F .

ID IO IM (2)

IS ID F (3)

with

F dx e dx dXre f
2 2 (4)

The width of the Gaussian dXre f is a parameter of the method.
We call it reference spatial distance. Its size determines the range
of the unsharp masking operation. The variable dx means the
spatial distance within the image. Next a correction image IC is
calculated by taking the difference of ID and the smoothed image
IS:

IC ID IS (5)

The correction image IC is then added to the mapped image IM
to get the contrast recovered image IE :

IE IM wIC (6)

Thereby w stands for an arbitrary weight parameter, in particular
a value of w 1 means full recovery of local contrast.

To obtain the final image IEM , a re-mapping into the des-
tination gamut is needed, because some of the colors close to
the gamut border may have moved out of gamut in the contrast
recovery step. Here a clipping algorithm such as HPMinDE is
appropriate.

IEM GMAHPMinDE IE (7)

Some basic features are visualized on a simple one-
dimensional intensity image as shown in Fig. 1. It consist of a
gradual sweep from minimum to maximum and a five step wedge
from maximum to minimum intensity, superimposed with a sta-
tistical noise, representing the local contrast. The values have to
be mapped from the interval 0 100 to 0 50 . A nonlinear com-
pression is used for the mapping conserving values close to zero
and strongly compressing values close to the maximum. The
reference spatial distance dXre f is 1% of the image size. The
main features of the unsharp masking method are nicely visu-
alized. Color regions which are unchanged by the mapping are
not altered by the method as can be seen in the correction image.
This is the case in the image in Fig. 1 with color values close to
zero. Overall we see a good recovery of the local contrast. In
the contrast recovered image the statistical variations again have
the size of the original image. An exception are values close to
the gamut boundary, where the last step again clipped the val-
ues which would lie outside of the allowed interval. With the
unsharp masking method we also introduced an artefact, namely
halo effects on sharp edges. This can be disturbing and has to
be avoided. This effect is small as long as the reference spatial
length is short, but for maximizing the visual gain in contrast
recovery, larger reference spatial length are needed. In the fol-
lowing we will introduce a method to avoid halo artefacts.

Extended Model
The global filter F is replaced by an edge conserving

smoothing. The smoothed image IS with pixels Ci
S is calculated

as a weighted sum over all pixels C j
D of the difference image ID:

Ci
S ∑

j
C j

DF xi x j ci c j ∑
j

F xi x j ci c j

(8)

where xi is the spatial position if the pixel i in the image and
ci its color value. The filter function F is defined as

F dx dc e dx dXre f
2 dc dCre f

2 2 (9)

Here we introduce a second parameter, the reference color
distance dCre f . The proposed edge preserving smoothing algo-
rithm is in fact a normalized Gaussian smoothing in a five di-
mensional position-color space where the positional distances
are scaled by dXre f and the color distance by dCre f . A similar
combination of spatial and color distances in the filter function
to avoid halo artefacts was proposed by DiCarlo and Wandell for
their robust tone reproduction operators [16]. The effect of halo
suppression is shown in Fig. 2 using dCre f 5. This can be best
seen in the correction image and the contrast recovered image
where the artefacts at the sharp edges have vanished compared to
Fig. 1

In all we have three parameters dXre f , dCre f and the weight-
ing parameter w. For full contrast recovery w 1 is used. For
images mapped to a small gamut with a low global contrast, full
recovery may not be visually pleasing. Here the weighting fac-
tor can be set to a smaller value. For the choice of dXre f we
have to consider the spatial range of the unmasking operation.
Very small values will recover only very fine structures of the
image. This mainly influences the perceived sharpness of the im-
age. Values in the range of the image will basically try to recover
the entire original image, but then too many colors have to be
mapped again in the last mapping step. The selection of dCre f is
directly related to the definition of ∆E as just noticeable color dif-
ference. Because we want to retain small color differences dCre f
should be substantially larger than 1. On the other side colors
further apart than ∆E 50 can be considered as large and should
not contribute to the smoothing filter. We found that dXre f values
in the range of 2 5% of the image diagonal and dCre f values in
the range of ∆E 10 25 give good performance.

Psychophysical Tests
Psycho-visual Tests: As far as applicable, the test proce-

dure was done following the CIE-guidelines [2]. All pair com-
parisons have been performed on an LCD screen (EIZO cg220).
The background of the screen was set to neutral gray. Behind the

Figure 1. Effect of contrast recovery for a one dimensional monochrome

image. Original image (top left), Mapped image (top right), Unsharp masked

image (bottom right) and difference image (bottom left)



Figure 3. Psycho-visual tests: First test set of 8 images

Figure 2. Effect of contrast recovery for a one dimensional monochrome

image using an edge preserving smoothing. Original image (top left),

Mapped image (top right), Unsharp masked image (bottom right) and dif-

ference image (bottom left).

screen and in the back of the observer dark gray and black paper
backgrounds respectively were used. For the psycho-visual test
two sets of test images were used: A first, traditional test set of
8 test images four of them ISO test images and the SKI image
recommended by the CIE guidelines (see Fig. 3) and 8 sets, each
containing 8 images from a newspaper agency [21].

The original image and two mappings thereof were shown
simultaneously on the screen, the original in the middle of the
screen and the two mappings left and right of the original. All
images had a constant height of 10.5 cm. The observing person
had to select the mapped image which he or she judged to be
the better representation of the original image. If both mappings
were judged to have equal quality, the original image had to be
selected. The observers were members of the staff of our insti-
tute. They were instructed and trained for tests doing a test with 3
different GMAs applied to 2 images. Every observer had passed
the "Ishihara test" and the "Farnsworth-Munsell Hue test" with
at least average discrimination. Each pair of different mappings
was shown equally often with exchanged positions to eliminate
preference effects of left or right position. All pairs were pre-
sented in random order.

Results and Discussion
Application to different gamut mapping algo-
rithms

We applied the method to different gamut mapping algo-
rithms. The method parameters were dXre f 4% of the image
diagonal, dCre f 20 and w 1. The results presented here are
on four algorithms covering the whole range from linear com-
pression to clipping. As a representative algorithm for linear
compression we choose simultaneous compression of lightness
and chroma towards the middle gray of the destination gamut.
We call this algorithm LComp. As clipping algorithm we used
minimum distance clipping (HPMinDE) one of the proposed al-

gorithms in the CIE guidelines [2]. Furthermore we used two
sophisticated algorithms with nonlinear compression, one is the
smooth gamut deformation algorithm (SGDA) [22] and the other
SGCK [2] the second CIE-recommendation. For all our exper-
iments we used the sRGB to newspaper printing work-flow as
application having an especially small destination gamut [23].

In general an improvement in perceived image quality was
achieved on the vast majority of the images with all investigated
algorithms. Fig. 4 shows sample images for the three algorithms
LComp, SGDA and HPMinDE. A significant improvement can
be seen for all three algorithms. Most noticeable is the recovery
of the background structure of the MUSICIAN image.

Halo artifacts
Unsharp masking methods are known to produce halo on

smooth color regions close to large edges. Artificial images such
as test images with color patches are especially prone to disturb-
ing effects. Fig .5 shows typical halo effects and their suppres-
sion by the proposed method for two sample images, the Gretag-
Macbeth color chart and the ISO-test image CAFE. In the color
chart the halo effect is especially disturbing and its suppression
is almost complete. Only in one dark gray patch a trace of halo
is remaining. In the CAFE image the halo effect is most pro-
nounced in the sky region close to the buildings.

Psychophysical Tests
The following algorithms were compared: SGCK and HP-

MinDE, SGDA and LComp. The results of the test set is shown
in Fig. 6. It summarizes the judgments of 21 persons on a to-
tal of 5376 pair comparisons. The accuracy scores shown, were
calculated from the z-score matrix as described by [3].
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Figure 6. Psycho-visual tests: Results using 72 test images and 21 ob-

servers. Left light bars show result for original mapping algorithm, the right

dark bar the result after applied contrast recovery

The difference between the initial gamut mapping algo-
rithms are as expected from other published psychophysical
tests [22, 3]. The performance of LCusp (linear compression)
and HPMinDE (clipping) is significantly poorer than those of the



Figure 4. Effect of contrast recovery for three GMAs: LComp (left), SGDA (middle) and HPMINDE (right) on the example of the MUSICIAN image. The top

row shows the mapped image IM and bottom row the contrast recovered image IMe.

more sophisticated algorithms SGCK and SGDA. The most sur-
prising result is the large gain if contrast recovery is applied. The
gain is larger then the differences between the initial algorithms.
All algorithms gain, but to a different level. LCusp gains less
then the other three. For this algorithm which tries to keep local
contrast on the cost of saturation, it is not surprising, that the gain
for additional contrast recovery is not as pronounced as for the
algorithms which primarily optimize saturation and lightness.

Conclusion
We have presented that spatial methods can successfully be

added to existing gamut mapping algorithms with a substantial
gain in perceived image quality. The use of a content based adap-
tive filter allows to prevent halo artifacts. The presented method
can be seen as a sample component within a modern gamut map-
ping design, combining global gamut mapping techniques with
spatial filtering and image-to-device gamut mapping. We are
convinced, that the potential for improvements ist not exploited
with the presented method. In fact there remains a vast field to
find the best combination of original gamut mapping algorithm
and contrast recovery. This could be one path towards a ’uni-
versal gamut mapping algorithm’ as a combination of nonlinear
compression, spatial methods and image dependent gamut source
gamuts.
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