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Abstract 

 We investigated the quality of the spectral estimation of 
incandescent and fluorescent illuminants using Non-negative 
Matrix Factorization (NMF), Independent Component Analysis 
(ICA) and a direct pseudo-inverse approach. We simulated the 
response of a commercial digital CCD camera coupled or not 
with coloured filters to a set of natural and artificial 
illuminants. None of the recovery algorithms used here needed 
information about spectral sensitivities of the camera sensors 
or eigenvectors to estimate the spectral power distributions of 
illuminants. Although nonnegative algorithms can reduce the 
computational cost of spectral devices, experiments show that 
ICA and direct pseudo-inverse methods consistently 
outperforms the NMF approaches, even for fluorescent lights 
and even using a reduced training set of illuminants. 

 

1. INTRODUCTION  
 
Multispectral analysis and synthesis of the spectral power 

distribution (SPD) of illuminants and spectral reflectances has 
been explored intensively during the last few years.[1]-[6] 
Different computational approaches have been introduced to 
improve both the spectral and colorimetric quality of spectral 
recovery and to reduce the number of components which are 
needed to recover the computed spectra.[4]-[5] In a previous 
work it was found that it is possible to recover daylight spectra 
with high spectral and colorimetric accuracy with a reduced 
number of 3 to 9 spectral bands with very promising results 
when a direct pseudo-inverse transformation or direct-mapping 
is established between spectra and digital counts.[6] The great 
advantage of this method by comparison with other algorithms 
using CCD cameras [7] is that it does not need information 
about spectral sensitivities of the camera sensors nor 
eigenvector analysis. In that work the training set of illuminants 
was clearly dominated by daylight spectra and thus spiky SPDs 
was avoided in the analysis. These spiky profiles are evident in 
fluorescent-type illuminants and cannot be represented 
adequately with linear models of reduced number of 
parameters. In addition, different approaches have been 
proposed for classifying fluorescent scene illumination instead 
of trying to recover their spectral profile.[8]-[9] 

The aim of the present work was to investigate the quality 
of the spectral estimation of fluorescent illuminants using a 
CCD colour camera. Recent approaches based on Independent 
Component Analysis (ICA) and non-negative linear modelling 
[10] have proven of particular interest to design physically 
realizable sensors for recovering spectral functions. These 

algorithms are used to derive appropriate basis for identifying 
the pseudo-inverse of the basis vectors with the optical sensors 
to be used by a spectral device.  We simulated the response of a 
commercial digital CCD camera coupled or not with coloured 
filters to a set of natural and artificial illuminants, and used 
different Non-negative Matrix Factorization (NMF) algorithms, 
ICA and the direct pseudo-inverse method mentioned above to 
recover the SPD of the illuminants from the camera responses.  

 

2. METHODS 
  
We simulated the responses of a digital CCD colour 

camera from QImaging (model Retiga 1300, QImaging Corp., 
Canada) with 12 bits intensity resolution per channel coupled 
with different coloured filters. The coloured filters were the 
colour glass filter OG550 and RG630 from OWIS GMBH once 
we had tested other filter combinations. Different sets of 
illuminants were used for the training and testing of the 
different algorithms to obtain the transformation between 
camera responses and the SPD of the illuminants: the training 
set was formed from a reduced number of t= 82 SPDs of 
daylights and fluorescent illuminants; and the test sets 
comprised a set of m=20 commercial fluorescent-type 
illuminants.[11] The camera was assumed to point to a uniform 
white reference surface with spectral reflectance function rW(�). 
The response of the kth sensor ρk is, 
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where Qk(�) is the spectral sensitivity of the kth sensor and E(�) 
is the SPD of the illuminant impinging on the white reference 
surface (chip number 19 from the GretagMacBeth 
ColorChecker). The camera responses were obtained with a 
single set of k=3 sensors, the three native RGB channels of the 
camera, a set of k=6 sensors, with three filtered RGB channels, 
and a set of k=9 sensors with six filtered RGB. 

2.1. NMF and ICA algorithms 
Given a non-negative data matrix E (an n × m matrix), non-

negative matrix factorization (NMF) finds an approximate 
factorization into two non-negative matrix factors W (an n × p 
matrix of basis vectors) and H (a p ×  m matrix of p coefficient  
vectors), where p is a smaller number compared to n and m.[12] 
In this work, the data matrix is a set of unknown illuminants E 
(an n × m matrix of m illuminant spectra sampled at n 
wavelengths) which will be derived using a relationship 
involving the coefficients vector within each column of H, 

E = W H   (2) 



 

 

 Since the intent of the spectral recovery is to estimate 
illuminant spectra from the responses of a CCD colour camera, 
we first computed a set of sensors outputs ρo (a k ×  t matrix of t 
training spectra which are captured by k sensors) and coefficient 
matrix Ho from a training set of illuminants. Thus, given a data 
matrix of unknown illuminants E, whose sensor outputs are ρ (a 
k × m matrix), the corresponding coefficient matrix H is 
computed from the training set as,  

( )  = +

o o
H H ρ ρ   (3) 

where ρο+ is the pseudo-inverse matrix of ρο; next, the equation 
(2) is applied to recover the estimated spectra. The rank of 
factorization p can be adjusted depending on the input data 
matrix in order to reduce the computational cost of spectral 
estimation. 

The ICA algorithm approximates data using a similar 
decomposition as (2) and finds basis vectors that are 
uncorrelated and also independent but not necessarily 
orthogonal. In this paper, we have used the ICA by Hyvarinen  
[13], and two NMF algorithms which use two different error 
functions for the optimal choice of W and H; the NMF 
algorithms were the Euclidean and the divergence updates by 
Lee and Seung.[14] 

2.2. Direct pseudo-inverse transformation 
This method is also based on a direct transformation 

between the estimated illuminant spectra E (an n × m matrix) 
and sensor responses ρ (an k × m matrix) expressed by, 

 =E F ρ  (4) 

In this expression, the matrix F is derived following a Wiener-
based method by, 

 = +

o o
F E ρ   (5) 

where Eo (an n × m matrix) and ρo (an k × t matrix) are the SPDs 
and their corresponding sensor outputs for the training set of 
illuminants.[6] 

2.3. Metrics for quality evaluation 
To quantify the quality of the reconstructions we have 

used four different metrics [15]: the Goodness-of-Fit-
Coefficient (GFC), the Root-Mean-Square-Error (RMSE), the 
CIELAB colour difference ∆E*

ab, and the integrated irradiance 
(IIE). The GFC is based on the Schwartz’s inequality and it is 
defined as, 
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where f(λ) and fr(λ) are the original and the estimated spectral 
functions, respectively. Colorimetrically accurate illuminant 
estimations require GFC>0.995, GFC>0.999 indicates quite 
good spectral fit, and values GFC>0.9999 signifies an almost-
exact fit. The CIELab colour difference formula was used to 
evaluate the colorimetric quality and differences of less than 3 
CIELab units between the original and the estimated spectra 
were considered acceptable. 

 
 

3. RESULTS 
 
Table 1 shows some of the results using only a reduced 

number of coefficients (p=3) and all of them (p=29). The rank 
of factorisation p=29 has been selected according to the 
convergence rate derived from ICA algorithm.[13] Where n.a. 
appears, it means that the algorithm does not converge 
appropriately, e.g. ICA for p< 29 coefficients, or it makes not 
sense, i.e. direct-pseudo-inverse algorithm as it does not use 
coefficients.[5] First, the results show that the spectral recovery 
qualities are far from being good. In all cases, GFC values are 
clearly below 0.995 on average, which is the limit value for a 
spectrally accurate estimation. This is an expected result 
because of the spiky spectral profiles of the SPDs, which 
corresponds to the SPD of fluorescent lights that we have used 
here. On the contrary the colour differences are always around 
or below 3 CIELab units which indicates a quite good 
colorimetric estimation. These subtle differences between the 
colorimetric (∆E*ab) and the spectral (GFC) metrics are 
originated in the presence of peaks of different heights in the 
SPDs of fluorescent illuminants. 

Figure 1 we show examples of recoveries from some 
SPDs of fluorescent lights and the different estimation 
algorithms with k=3, k=6 and k=9 sensors. The integrated 
irradiance values (IIE) reveals the differences among the 
different methods and signal the importance of avoiding 
mononumerosis to evaluate the recovered spectra. 

Second, the advantage of the NMF algorithm is that we 
can adjust the size of the coefficient matrix H to minimize the 
computational cost of SPD recovery. But by working with a 
reduced rank of p=3 both the spectral and the colorimetric 

GFC
Colour 

dif.
IIE

NMF Euclidean 3 sensors 0.9416 3.32 0.2931
6 sensors 0.9654 2.88 0.2194
9 sensors 0.9676 3.72 0.2037

NMF Divergence 3 sensors 0.9464 2.8 0.2697
6 sensors 0.9678 2.46 0.1929
9 sensors 0.9684 3.09 0.1811

ICA 3 sensors
6 sensors
9 sensors

Direct pseudo-inv 3 sensors
6 sensors
9 sensors

GFC
Colour 

dif.
IIE

NMF Euclidean 3 sensors 0.9506 1.95 0.254
6 sensors 0.9786 0.96 0.1466
9 sensors 0.9785 0.98 0.1347

NMF Divergence 3 sensors 0.9507 1.96 0.2537
6 sensors 0.9789 0.73 0.1464
9 sensors 0.9793 0.45 0.1305

ICA 3 sensors 0.9506 1.95 0.2537
6 sensors 0.9787 0.74 0.1469
9 sensors 0.9798 0.36 0.1299

Direct pseudo-inv 3 sensors 0.9507 1.95 0.2537
6 sensors 0.9787 0.75 0.1464
9 sensors 0.9798 0.36 0.1294

Rank of parametrization All components

n.a.

p= 3Rank of parametrization

n.a.

Table 1: Spectral and colorimetric quality of spectral recovery of 

test illuminants for the algorithms tested. The results are mean 

values for a set of 20 fluorescent SPDs.  



 

 

quality of recoveries are reduced in a similar way. In addition, 
results suggest that ICA and direct pseudo-inverse approaches 
lead to very similar results, and NMF is a little worse. In a 
previous work we found that daylight spectra could be 
recovered with a reduced number of sensors based on a priori 
analysis of an RGB set of signals from a white surface captured 
by a digital CCD camera.[6] The results shown here from the 
ICA and the direct pseudo-inverse methods confirm the CCD’s 
potential as illuminant-estimation device even for a reduced 
training set of illuminants and the spiky profiles of some of 
these SPDs. 

As we can see in the left column of figure 1, the values of 
the colour differences ∆E*

ab suggest that acceptable illuminant 
colour identification is possible using a reduced number of 
sensors. The examples in the right column of the figure also 
show that colorimetric and spectral quality increase as the 
number of sensors increases. Nevertheless the recoveries 
worsen for “daylight fluorescents”, which are characterised by 
different peaks and a background continuum (e.g. upper right 
SPD in figure 1).   

 

4. CONCLUSSIONS 
 
We have used three different algorithms, which are based 

on different mathematical background, for recovering SPD of 
fluorescent lights. The spectral profile of these lights are 
characterised by the presence of prominent peaks along the 
visible spectrum, and these peaks are difficult to recover using 
linear models with reduced number of parameters. The results 
shown here suggest that fluorescent lights can be recovered 
with both high spectral and colorimetric accuracy using no 
information about spectral sensitivities of the camera sensors or 
eigenvectors. Although nonnegative algorithms can reduce the 
computational cost of spectral devices, experiments show that 
ICA and direct pseudo-inverse methods consistently 
outperforms the NMF approaches, even for fluorescent lights 
and even using a reduced training set of illuminants.   
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Figure 1: Original (—) and recovered (o) spectrum using the NMF divergente update and ICA algorithm with simulated digital counts 
and different number of sensors. 
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