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Abstract
In this paper, we propose an original color image analysis

scheme to retrieve among all the target images of a database,
those which contain the same object as that represented by the
query image, these images being acquired under different illumi-
nation conditions. Rather than considering the color vectors of
the pixels to characterize the images, we propose to exploit the
concept of ranks of CCD sensor responses which are assumed to
be preserved in case of illumination changes. Since these ranks
are not directly available from a color image, we propose to esti-
mate their probabilities of occurrence thanks to fuzzy functions.
These probabilities are used by our object recognition scheme
whose effectiveness is assessed with a public database that con-
tains images of objects acquired under different illuminations.

Introduction
Object recognition across illumination changes

In this paper, we propose an original scheme to retrieve
among all the target images of a database, those which contain
the same object as that represented by the query image, these im-
ages being acquired under different illumination conditions (see
figure 1).
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Figure 1. As the images (a), (b) and (c) contain the same object observed

under different illuminations, they are similar. As the image (d) contains

another object, the pairs of images ((a), (d)), ((b), (d)) and ((c),(d)) constitute

pairs of different images.

In this context, the image indexing scheme consists in ex-
tracting robust and efficient characteristic indices from the target

and query images. These indices are typically derived from the
shape, the texture or the color properties of the objects. Object
recognition is performed by means of a matching scheme which
compares the indices of the query image with those of the target
images. The matching scheme is based on a similarity measure
between these indices. The target images are ranked with respect
to their similarity measures with the query image, in order to de-
termine those which contain the same object as that represented
by the query image.

One of the most widely used image indices based on the
color distribution is the color histogram [1]. The color histogram
H[I] of an image I is composed of bins H[I](c) associated with
color vectors c whose coordinates are the levels of the three color
components, namely the red (cR), the green (cG) and the blue
(cB). Each bin indicates the number of pixels which represent the
object in the image and which are characterized by this particular
color.

Since the color vector of a pixel P, denoted c(P) =
[cR(P),cG(P),cB(P)]T , is not only a measure of the reflectance
properties of the elementary surface of the object projected onto
the pixel P but also a function of both the camera and the illu-
mination [2], the color histogram of an image is very sensitive
to these parameters. Therefore, many authors propose to charac-
terize the images by histograms which are invariant to illumina-
tion changes [3, 4]. The determination of these invariant color
histograms is based on illumination change models which de-
scribe the variations of colors caused by any illumination change.
Most of these models try to represent these variations by linear
transformations [5] and are consequently constraint to use very
restrictive assumptions about the camera and the illumination.
That’s the reason why object recognition based on the intersec-
tion between these invariant color histograms generally performs
poorly [3, 4].

Rather than considering the color vectors to define complex
illumination change models, we exploit the concept of ranks of
color component levels which respect interesting properties in
case of illumination changes.

Ranks of color component levels
A color image I can be separated into three color component

images Ik, k ∈ {R,G,B}, where each pixel P is characterized by
one color component level ck(P). Within each color component
image, the pixels are sorted in the increasing order of their lev-
els and are associated to a rank, so that the rank is close to 0 for
the first ordered pixels, and equal to 1 for the last ordered pixels.
Finlayson [6] introduces the rank Rk[I](l) of the color compo-
nent level l which is the rank of the pixels characterized by this



level within the color component image Ik and is expressed as :

Rk[I](l) =
∑l

i=0 Hk[I](i)

∑L−1
i=0 Hk[I](i)

, k ∈ {R,G,B}, (1)

where L is the number of levels used to quantize the color com-
ponents (L is generally set to 256), and Hk[I](l) is the number of
pixels characterized by the level l in Ik. Note that this rank can
be interpreted as the normalized cumulative histogram of Ik.

The rank of the level l can also be expressed as :

Rk[I](l) =
Card{P ∈ I/ck(P)≤ l}

Card{P ∈ I} . (2)

Finlayson assumes that the ranks of the levels within a color
component image are not modified by illumination changes [6].
Thus, he proposes to characterize each pixel P by its three ranks
Rk[I](ck(P)), k∈ {R,G,B}, and to compute for each image I, the
histogram H [I] of ranks. Each of its cells H [I](RR,RG,RB)
contains the number of pixels whose ranks are equal to RR,
RG and RB in the color component images IR, IG and IB, re-
spectively. Then, Finlayson proposes to compare two images by
means of the intersection between their histograms of ranks.

Nevertheless, we have shown experiments which reveal that
the ranks of color component levels are not strictly preserved in
case of illumination changes [7].

Paper overview
In the second section, we define the concept of ranks of

camera sensor response which respect interesting properties in
case of illumination changes.

In the third section, we present the relationship between the
ranks of the camera sensor responses and the ranks of the color
component levels. Furthermore, we show that the ranks of sensor
responses can not be precisely evaluated from a color image.

Consequently, we propose to estimate their probabilities of
occurrence thanks to fuzzy functions. In the fourth section, we
describe how to characterize each image by the histogram of
fuzzy ranks.

In order to show the improvement brought by our scheme,
we compare, in the fifth section, the object recognition results ob-
tained by the intersection between histograms of ranks and those
obtained by the intersection between the histograms of fuzzy
ranks.

Ranks of camera sensor responses
Definition

Within a color image I, we associate with each pixel P, a
vector denoted x(P) = [xR(P),xG(P),xB(P)]T whose coordinates
xk(P), k ∈ {R,G,B}, are the responses of the acquisition CCD
camera sensors to the color stimulus reflected by an elementary
surface and projected onto the pixel P.

For each CCD sensor, the pixels are sorted in the increasing
order of these responses and are associated with a rank, so that
the rank is close to 0 for the first ordered pixels, and equal to 1
for the last ordered pixels. The rank Rk[I](x) of the CCD sensor
response x is the rank of the pixels associated with this response
for the kth CCD sensor and is expressed as :

Rk[I](x) =
Card{P ∈ I/xk(P)≤ x}

Card{P ∈ I} , k ∈ {R,G,B}, (3)

where P are the pixels which represent the object in the image I.

Ranks of camera sensor responses and illumina-
tion changes

Finlayson presents experiments which consist in analyzing
the sensor responses of different acquisition devices to 462 Mun-
sell chips lit by 16 different lights [6]. This study reveals that
the preservation of ranks Rk[I](xk(P)) of sensor responses holds
across a wide range of illuminants.

This property is very interesting in the context of object
recognition across illumination changes. Then, for each pixel,
he proposes to estimate the ranks of the three CCD sensor re-
sponses from the three color component levels of this pixel and
to characterize it by these estimated ranks.

Therefore, he assumes that the ranks Rk[I](xk(P)) of the
sensor responses are identical to the ranks Rk[I](ck(P)) of the
color component levels. Consequently, he deduces that the ranks
of color component levels are preserved in case of illumination
changes. That leads him to characterize the images by their his-
tograms of ranks.

Nevertheless, we have shown that the ranks of the color
component levels are not strictly invariant to the illumination
condition changes [7]. Hence, the ranks Rk[I](xk(P)) of the sen-
sor responses xk(P), k = R,G,B, at each pixel P can not be as-
sumed to be identical to the ranks Rk[I](ck(P)) of the color com-
ponent levels ck(P).

Ranks of color component levels and ranks
of sensor responses

In this part, we present the relationship between the ranks
of the color component and the ranks of the sensor responses.

Color component levels and sensor responses
Under Lambertian assumptions, the sensor response xk(P),

k ∈ {R,G,B}, to a color stimulus reflected by the elementary
surface observed by the camera and projected onto the pixel P
depends on the spectral power distribution E(λ ) of the incident
illuminant, on the spectral reflectance β (P, λ ) of the elemen-
tary surface projected onto P and on the three spectral sensitivity
functions C k(λ ), k ∈ {R,G,B}, of the camera sensors, so that :

xk(P) =
∫

λ
C k(λ )β (P,λ )E(λ )dλ , k ∈ {R,G,B}. (4)

Then, the sensor response xk(P) is quantized by the elec-
tronic device of the camera into L levels to provide ck(P), the kth

color component level of P, thanks to the analog-digital converter
f :

ck(P) = f (xk(P)). (5)

Assumptions about the quantization function
In order to consider that the ranks of the color component

levels are identical to the ranks of the sensor responses, Finlayson
assumes that the function f is strictly increasing (see figure 2(a)).
This assumption is very restrictive.

Our work is based on a less restrictive assumption. Indeed,
since the function f represents the analog-digital converter, it
would be more realistic to consider that this is only an increasing
function (see figure 2(b)) so that :

if xk(P′) > xk(P) then ck(P′)≥ ck(P). (6)

When f is a monotonic increasing function, the color com-
ponent levels and sensor responses respect this property (see fig-
ure 2(b)) :

if ck(P′) > ck(P) then xk(P′) > xk(P). (7)
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Figure 2. Assumptions about the analog-digital converter f . In the figure

(a) f is strictly increasing, while in the figure (b) f is only increasing.

We propose now to analyze the consequences of such an
assumption on the relationship between the ranks of the color
component levels and the ranks of the sensor responses.

Relationship between the ranks
We consider a color image I. We denote Nk the number of

levels which are present in the color component image Ik and
{Rk

1, Rk
2, ..., Rk

Nk} the subset of successive ranks of these levels

sorted by the increasing order so that Rk
i−1 < Rk

i .
Let us consider one of the pixels Pi characterized by the rank

Rk[I](ck(Pi)) = Rk
i in the color component image Ik.

From equations (6) and (7), we deduce that the number of
pixels Q so that xk(Q) > xk(Pi) is higher or equal than the number
of pixels Q′ so that ck(Q′) > ck(Pi) :

Card{Q∈ I/xk(Q) > xk(Pi)}≥Card{Q′ ∈ I/ck(Q′) > ck(Pi)}.
(8)

By dividing each member of equation (8) by the number of
pixels within the image I, we obtain :

Card{Q ∈ I/xk(Q) > xk(Pi)}
Card{P ∈ I} ≥ Card{Q′ ∈ I/ck(Q′) > ck(Pi)}

Card{P ∈ I}.
(9)

The left member of this equation can be simplified as :

Card{Q ∈ I/xk(Q) > xk(Pi)}
Card{P ∈ I}

=
Card{P ∈ I}
Card{P ∈ I} −

Card{Q′′ ∈ I/xk(Q′′)≤ xk(Pi)}
Card{P ∈ I}

(10)

= 1−Rk[I](xk(Pi)). (11)

Equation (11) is deduced from equation (3).
From equation (2), the right term of equation (9) is ex-

pressed as :

Card{Q′ ∈ I/ck(Q′) > ck(Pi)}
Card{P ∈ I}

=
∑L−1

m=ck(Pi)+1 Hk[I](m)

∑L−1
j=0 Hk[I]( j)

=
∑L−1

m=0 Hk[I](m)

∑L−1
j=0 Hk[I]( j)

− ∑ck(Pi)
m=0 Hk[I](m)

∑L−1
j=0 Hk[I]( j)

= 1−Rk[I](ck(Pi))

= 1−Rk
i .

(12)

Thus, equation (9) becomes :

1 − Rk[I](xk(Pi))≥ 1 − Rk
i

Rk[I](xk(Pi))≤Rk
i .

(13)

In the same way, since f is a monotonic increasing func-
tion, each pixel Q so that ck(Q) < ck(Pi) respects the property :
xk(Q) < xk(Pi). That is to say that the number of pixels Q so that
xk(Q) < xk(Pi) is higher or equal than the number of pixels Q′ so
that ck(Q′) < ck(Pi) :

Card{Q∈ I/xk(Q) < xk(Pi)}≥Card{Q′ ∈ I/ck(Q′) < ck(Pi)}.
(14)

By dividing each member of equation (14) by the number
of pixels within the images, we obtain :

Card{Q ∈ I/xk(Q) < xk(Pi)}
Card{P ∈ I} ≥ Card{Q′ ∈ I/ck(Q′) < ck(Pi)}

Card{P ∈ I} .

(15)

The first member of equation (15) can be expressed as :

Card{Q ∈ I/xk(Q) < xk(Pi)}
Card{P ∈ I}

=
Card{Q ∈ I/xk(Q)≤ xk(Pi)}

Card{P ∈ I} − Card{Q′′ ∈ I/xk(Q′′) = xk(Pi)}
Card{P ∈ I}

=Rk[I](xk(Pi))− Card{Q′′ ∈ I/xk(Q′′) = xk(Pi)}
Card{P ∈ I} .

(16)

Secondly, let us consider Pi−1, one of the pixels in the im-
age I, characterized by the rank Rk[I](ck(Pi−1)) = Rk

i−1. Since
we sort the ranks Rk

i of levels in the color component image Ik

so that Rk
i−1 < Rk

i , and since Rk[I](ck(Pi)) = Rk
i , there is no

pixel in the color component image Ik which is characterized by



a level between ck(Pi−1) and ck(Pi). Hence, the second member
of equation (15) can be expressed as :

Card{Q′ ∈ I/ck(Q′) < ck(Pi)}
Card{P ∈ I}

=
∑ck(Pi)−1

m=0 Hk[I](m)

∑L−1
j=0 Hk[I]( j)

=
∑ck(Pi−1)

m=0 Hk[I](m)

∑L−1
j=0 Hk[I]( j)

+
∑ck(Pi)−1

m=ck(Pi−1)+1 Hk[I](m)

∑L−1
j=0 Hk[I]( j)

=
∑ck(Pi−1)

m=0 Hk[I](m)

∑L−1
j=0 Hk[I]( j)

+ 0

=
∑ck(Pi−1)

m=0 Hk[I](m)

∑L−1
j=0 Hk[I]( j)

=Rk
i−1.

(17)

So, equation (15) becomes :

Rk[I](xk(Pi))−Card{Q′′ ∈ I/xk(Q′′) = xk(Pi)}
Card{P ∈ I} ≥Rk

i−1. (18)

Since there exists at least one pixel which is characterized
by the sensor response xk(Pi), we have :

Card{Q′′ ∈ I/xk(Q′′) = xk(Pi)}
Card{P ∈ I} > 0. (19)

So, equation (18) becomes :

Rk[I](xk(Pi)) > Rk
i−1. (20)

Based on equations (13) and (20), we conclude :

Rk
i−1 < Rk[I](xk(Pi)) ≤ Rk

i . (21)

We have shown that, when the analog-digital converter of
the camera is assumed to be a monotonic increasing function,
the rank Rk[I](xk(Pi)) of the sensor response corresponding to the
pixel Pi in the color component image Ik ranges between Rk

i−1
and Rk

i .
Equation (21) shows that the ranks of the sensor responses

are not associated with crisp values, but rather within intervals
of consecutive values. That leads us to introduce the concept
of fuzzy ranks and to characterize the color images by their his-
tograms of fuzzy ranks.

Histogram of fuzzy ranks
Fuzzy ranks

In the previous part, we have shown that the ranks of sensor
responses range within intervals of color component ranks. So
the ranks of the sensor responses can not be exactly evaluated
from the ranks of the color component. Hence, we propose to
estimate their probabilities of occurrence thanks to fuzzy func-
tions.

Since no prior knowledge is available about the distribution
of ranks of sensor responses inside their associated color com-
ponent rank intervals, we assume that they are equiprobably dis-
tributed.

Hence, we associate with each color component rank Rk
i a

fuzzy subset constituted of all the possible sensor response ranks

ranging between 0 and 1. We define the membership degree μk
Rk

i

of the rank r of a sensor response to this subset as :

⎧⎪⎨
⎪⎩

μk
Rk

1
(r) =

1

Rk
1

i f r ∈]0;Rk
1]

μk
Rk

i
(r) = 0 else,

(22)

and, for i = {2, ...,Nk} :

⎧⎪⎨
⎪⎩

μk
Rk

i
(r) =

1

Rk
i −Rk

i−1

i f r ∈]Rk
i−1;Rk

i ]

μk
Rk

i
(r) = 0 else.

(23)

The membership degrees of the ranks which belong to the
same intervals are equal.

Histogram of fuzzy ranks
In order to characterize the images by the ranks of the sensor

responses which are not very sensitive to illumination changes,
we propose to characterize each image by its histogram of fuzzy
ranks, these fuzzy ranks being the membership degrees of the
sensor ranks to the fuzzy subsets corresponding to color ranks.

From the histogram of ranks, we compute the histogram η
of the fuzzy ranks in the image I as :

η[I](rR,rG,rB) =

NR

∑
u=1

NG

∑
v=1

NB

∑
w=1

μR
RR

u
(rR) μG

RG
v
(rG) μB

RB
w
(rB)

×H [I](RR
u ,RG

v ,RB
w).

(24)

For the implementation purpose, the rank r is quantified
with (M + 1) levels, M being adjusted by the analyst, so that
r = 0, 1

M , 2
M , ..., M

M . So, the histogram of fuzzy ranks contain M3

cells.

Experimental results
Object recognition across illumination changes
with the SFU database

We propose to demonstrate the improvement of the inter-
section between the pairs of histograms of fuzzy ranks for ob-
ject recognition purpose across illumination changes. We use
the Simon Fraser University (SFU) database [4] available at
http://www.cs.sfu.ca/∼colour/data. Its 187 images contain 17
objects lit by one of 11 available illumination sources and ac-
quired with the same viewing conditions by one camera (see fig-
ure 3).

For object searching, the images acquired under one illumi-
nation, called the target illumination, are considered as being the
target images and one of those acquired under one of the 10 other
illumination sources, called the query illumination, is considered
as being the query image. So, there are 11×10 different pairs
of query-target illumination. The image retrieval is repeated for
each of the 17 objects. Finally, 1870 retrievals are achieved (17
objects × 11 × 10 pairs of different illumination).

For each image retrieval, the 17 target images are ordered
with respect to the intersections between their invariant color
histograms and the invariant color histogram of the considered
query image. When the first ordered target image is similar to
the query image, the research result is considered as perfect.



Figure 3. The 17 objects of the SFU database.

We propose to compare the results obtained by the intersec-
tion between the histograms of the ranks [8] with those obtained
by the intersection between the histograms of the fuzzy ranks.

Each column of table 1 indicates the percentage of success-
ful image retrievals.

Intersection

between

(M = 16) (M = 64) (M = 256)

histograms of

ranks

89.89 75.08 48.72

histograms of

fuzzy ranks

97.27 91.07 87.06

Object recognition results obtained by the intersections be-

tween different histograms with the SFU database.

Table 1 shows that, for object recognition across illumina-
tion changes, the intersection between the histograms of fuzzy
ranks provides better results than those obtained by the intersec-
tion between histograms of ranks, for significantly different val-
ues of M. Furthermore, Table 1 shows that the quality of object
recognition by the intersection between the histograms of ranks
is very sensitive to M. On the other hand, the results obtained by
the intersection between the histograms of fuzzy ranks remain
stable when M varies.

Discussion
The improvements provided by our scheme with this data-

base can be explained by three main points.
First, the processing of the histograms of fuzzy ranks is de-

rived from two assumptions which are less restrictive than the
classical assumptions. First, the analog-digital converter f is as-
sumed to be only a monotonic increasing function. Secondly,
the ranks of the sensor responses are assumed to be equiproba-
bly spread inside the different intervals, whereas the histogram
of ranks is based on the assumption that the ranks of the sensor
responses are strictly identical to the ranks of the color compo-
nent levels. As the object recognition results obtained by the
histograms of fuzzy ranks are better than those obtained by the
histograms of ranks, we deduce that the ranks of the sensor re-
sponses are really different from the ranks of the color compo-
nent levels.

Secondly, the estimation of the ranks of the sensor responses
is based on an original fuzzy approach. Indeed, since we can
not estimate the ranks of the sensor responses by crisp values,
we introduce the concept of fuzzy rank to represent the different
intervals which are associated with the different ranks of sensor
responses. This fuzzy approach contributes to improve the results
of object recognition.
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Figure 4. Projections of examples of histograms of ranks and fuzzy ranks

onto the red-green color space. Figure (b) is the histogram of fuzzy ranks

derived from the histogram of ranks represented in figure (a). The cells

labeled as black contain a number of pixels strictly higher than 0, while cells

labeled as white represent empty ones.

Finally, the performance reached by object recognition
schemes depends on the number (M)3 of bins of the histograms.
For processing the histograms of ranks (fuzzy ranks, respec-
tively), the number of bins is reduced from (L)3 to (M)3 by
means of an uniform quantization of the ranks (fuzzy ranks, re-
spectively). When the number of different ranks within an image
is low, the resulting histogram of ranks is constituted by a high



number of empty cells (see figure 4(a)). In this case, the intersec-
tion between two histograms of ranks may be low. On the other
hand, whatever the number of ranks, the fuzzy ranks range within
intervals which are spread on M bins for each color component,
with respect to the content of the image (see figure 4(b)). Con-
sequently, the number of empty cells in the histogram of fuzzy
ranks depends on the content of the image and is lower than
the number of empty cells in the histogram of ranks. This ex-
plains why the results obtained by the intersection of histograms
of ranks are so sensitive to the values of M and why the results
obtained by the histograms of fuzzy ranks remain stable when M
varies.

Conclusion
In this paper, we have proposed a new approach to cope with

the problem of object recognition across illumination changes.
Rather than considering the color vectors of the pixels to charac-
terize the images, we exploit the concept of ranks of CCD sensor
responses which are assumed to be preserved in case of illumi-
nation changes. Since we can not determine these ranks from a
color image, we estimate their probabilities of occurrence thanks
to fuzzy functions. These probabilities are used by our object
recognition scheme whose effectiveness is assessed with a public
database that contains images of objects acquired under different
illuminations.
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