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Abstract 
Colour image filtering is not an obvious task when 

considering rank order filters. In this paper, an original way of 
setting up a spatially adaptive median filter is described. The 
proposed methodology is based on the computation of a colour 
distance map. Such a map allows the estimation of the optimal 
width of the filtering window at each point of the image to 
process. The sort of colour vectors, inherent to a median 
filtering approach, is achieved by using a bit-mixing paradigm. 
Finally, experimental results reported in this paper show that 
the proposed method is able to remove noise whereas fine 
details and edges are preserved. At the same time, the method 
is computationally efficient and very easy to implement. 

Introduction 
Images are often corrupted by noise that may bias and 

compromise the image processing stages required by computer 
vision applications. Then, noise filtering is a very important 
task in the pre-processing methods. The quality of its results 
has a direct influence on the main image processing algorithms 
such as segmentation or pattern analysis. Inappropriate and 
coarse results may strongly deteriorate the relevance and the 
robustness of a computer vision application. The main 
challenge in noise removal consists in suppressing the 
corrupted information while preserving the integrity of image 
structures in order to build reliable automatic analysis 
processes. 

Several and well established techniques, such as median 
filtering, have successfully been used in grey scale imaging. 
The median filter is a non linear operator of the class of rank 
filters [1]. It was shown that median filters present the 
advantage to remove noise without blurring edges. Futhermore, 
their output is one of the original grey values. 

The extension of the concept of median filtering to colour 
images is not a simple task. Componentwise (marginal) 
techniques that separately process on colour channels generally 
lead to strong artifacts because colour channels are inherently 
correlated [2]. Then vector (multivariate) approaches that work 
on the complete colour information of each pixel of an image 
are largely preferred. The main difficulty in defining a rank 
filter in vector approaches is that there is no “natural” and 
unambiguous order in data. During the last years, different 
methods were proposed to overcome this problem [3, 4]. 

The main reference in vector filtering was probably 
introduced by Astola et al. in 1990 [5]. In such a class of 
filters, so called vector median filters (VMF), the ordering 
problem is achieved by minimizing vector distances. VMF uses 
the L1 or L2 norm to order vectors according to their relative 
magnitude differences [6, 7]. Another class of filters classically 
found in the literature orders vectors according to their relative 
orientation differences hence the name vector directional filter 
(VDF) [8]. 

Many approaches were proposed to evaluate differences 
and it makes difficult the selection of a filter for a given set of 
colour images. To overcome this problem another option can 
be considered for RGB images. It consists in defining a total 
order on the three-dimensional colour space [2]. Such a total 
order can be achieved through a bijective transform based on a 
bit-mixing paradigm as proposed in [9]. As explained further, 
the basic principle is to mix the 8 bits of the three channels R, 
G and B to get a 24-bit scalar data. 

Whatever the vector filtering method, the challenge is to 
detect and replace noisy pixels whereas the relevant 
information is preserved. But it is recognized that in some 
image areas most of vector filters blur thin details and image 
edges [10, 11]. Even if many works such as Khriji and 
Gabbouj [12], Lucat et al. [13] and Lukac et al. [14, 15] 
propose to improve the quality of the output images, it is often 
by using constraints, restrictions and optimization stage more 
or less difficult to set up and control. 

In this paper we present an adaptive median filter that 
preserves fine image details without introducing colour artifacts 
when removing noise. Besides these noticeable characteristics, 
the method we propose is simple and very efficient that is a 
great advantage because the computational cost can be a serious 
problem in several industrial computer vision applications. 

Determination of the colour distance map 
The first stage of the adaptive median filter we propose 

corresponds to the computation of a colour distance map which 
outlines the highest colour differences in the image to process. 
The underlying idea is to adjust and to optimise the width of 
the filter window on the colour difference information. 

 

 
Figure 1. Original colour image 

First of all, two directional maps are computed from the 
original image (see example in Figure 1) by using the 
Euclidean distance between colours in the RGB space. The first 
map corresponds to the colour distance between a point and its 
closest right neighbour (X-map) and the second one to the 
colour distance between this point and its closest top neighbour 
(Y-map) (Figure 2). 
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Figure 2. Points of the neighbourhood used to compute the directional 
maps : A and B for the X-map and A and C for the Y-map 

These two directional maps are mixed according to a 
selected threshold in order to determine the greatest colour 
differences in horizontal and vertical directions. Figure 3 shows 
two examples of colour distance maps computed from the 
original image of Figure 1 respectively for a threshold value of 
10 and of 30 when the maximal distance value is equal to 216. 
This map does not accurately delineate edges but it gives points 
where the colour differences are the most representative. 

 

  
Figure 3. Colour distance maps: the threshold value is equal to 10 on the 
left and to 30 on the right 

Determination of the width of the local 
filtering window 

Because of the shape of its “circles”, the distance 
presenting the best properties to determine the width of the 
local window for a spatially adaptive filter is defined by the 
following relation : 

( ) ( )PMPM yy,xxmaxP,Mchd −−=  (1) 

for two points M and P with position vectors (xM, yM) and 
(xP, yP). Equation (1) describes the definition of the chessboard 
distance between two arbitrary points M and P. For the 
chessboard distance, “circles” or equidistant sets of points are 
located on a square (Figure 4). This property ensures that each 
point of the square is at a distance less or equal to r, the radius 
of the corresponding circle. 
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Figure 4. "Circles" for the chessboard distance: every point of the square 
perimeter is at a distance r from the centre O 

A generalization of the distance computation consists of 
the elaboration of the corresponding distance map from a 
binary image. This binary image is supposed to include two 
classes : the object class and the background class. For our 
application, a chessboard distance map is computed from the 
colour distance map. Points where the colour differences are 
greater than the given threshold are considered as objects. For 
each point of the background, the distance to the nearest object 
can be evaluated. 

The chessboard distance map is then computed according 
to the following algorithm by scanning twice the colour 
distance map. 

Algorithm 
Initialise the distance map D by setting points of the objects to 
0 and those of the background to ∞+  
For each line i of the distance map D, from top to bottom, 

For each point (i, j)  of the current line, from left to right, 
 Set the distance D(i, j) to the minimal value between 

D(i, j), D(i+1, j)+1,D(i+1, j+1)+1 
and D(i, j+1)+1 

For each line i of the distance map D, from bottom to top, 
For each point (i, j)  of the current line, from right to left, 
 Set the distance D(i, j) to the minimal value between 

D(i, j), D(i-1, j)+1, D(i-1, j-1)+1 
 and D(i, j-1)+1 

Table 1. Numerical example of a chessboard distance map 
2 2 2 2 2 2 2 3 4 4 5 4 3 2 1 0 1 2 3 4 
2 1 1 1 1 1 2 3 3 4 5 4 3 2 1 0 1 2 3 4 
2 1 0 0 0 1 2 2 3 4 5 4 3 2 1 0 1 2 3 4 
2 1 1 1 0 1 1 2 3 4 5 4 3 2 1 0 1 2 3 4 
2 2 2 1 1 0 1 2 3 4 5 4 3 2 1 0 1 2 3 4 
3 3 2 2 1 1 1 2 3 4 5 4 3 2 1 0 1 2 3 4 
4 3 3 2 2 2 2 2 3 4 4 4 3 2 1 1 1 2 3 4 
4 4 3 3 3 3 3 3 3 3 3 4 3 2 2 2 2 2 3 4 
5 4 4 4 3 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 
5 5 5 4 3 2 1 1 1 2 3 2 2 2 2 2 2 2 3 4 
6 6 5 4 3 2 1 0 1 2 3 2 1 1 1 1 1 2 3 4 
7 6 5 4 3 2 1 1 1 2 3 2 1 0 0 0 1 2 3 4 
6 6 5 4 3 2 2 2 2 2 3 2 1 0 1 0 1 2 3 4 
5 5 5 4 3 3 3 3 3 3 3 2 1 0 0 0 1 2 3 4 
4 4 4 4 4 4 4 4 4 4 3 2 1 1 1 1 1 2 3 4 
3 3 3 3 3 3 3 4 5 4 3 2 2 2 2 2 2 2 3 4 
3 2 2 2 2 2 3 4 5 4 3 3 3 3 3 3 3 3 3 4 
3 2 1 1 1 2 3 4 5 4 4 4 4 4 4 4 4 4 4 4 
3 2 1 0 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 
3 2 1 1 1 2 3 4 5 6 6 6 6 6 6 6 6 6 6 6 

 

  
Figure 5. Chessboard distance maps: the threshold value for the colour 
distance map is equal to 10 on the left and to 30 on the right 



 

 

This process consists in minimizing the distance between a 
given point B of the background and points of the objects. 
Information about object position is propagated from 
background points to their neighbours by considering an update 
of distance values on the V8 neighbourhood. 

In this way, the example of the chessboard distance map 
described in Table 1 gives, for each point of the background, its 
distance to the nearest object. In Figure 5, the object class is 
made of the information provided by the colour distance map 
and by the first and last columns and rows of the image. 
Actually it is necessary to consider these columns and rows as 
boundaries for the chessboard distance map, as filter windows 
cannot overflow the image frame. The chessboard distance map 
provides the half-width of the maximal square included in the 
background and reaching the objects at least at one point 
(Figure 6). Thus, we simply obtain the width of the filtering 
window with the evaluation of the distance to the objects 
derived from the colour distance map. The width W(i, j) of the 
filtering window at a point (i, j) of the background is then equal 
to twice the distance D(i, j) plus 1 (see relation (2)). 

1)j,i(D.2)j,i(W +=  (2) 

 

Figure 6. Filtering windows at different points of the background 

Median value computation 
The last stage of the adaptive median filter we propose 

consists in computing the median vector for each window 

previously defined. The colour order is based on a bit-mixing 
paradigm (Figure 7) that combines the 8 bits of the three RGB 
components to get 24 bit scalar data [9]. In this way, a 24 bit 
integer value is associated with each colour vector, so that 
colours can be sorted to complete the median filtering process. 
 
r1 r2 r3 r4 r5 r6 r7 r8 b1 b2 b3 b4 b5 b6 b7 b8 

g1 g2 g3 g4 g5 g6 g7 g8  
 
 
 

r1 g1 b1 r2 g2 b2 r3 g3 b3 r4 g4 b4 r5 g5 b5 r6 g6 b6 r7 g7 b7 r8 g8 b8 
 
Figure 7. Bit-mixing paradigm 

For example, if the filtering window is of n-width, the n² 
colour vectors are sorted according to their associated 24 bit 
scalar values. Then, the median scalar value, i.e. the (1+n²/2)th 
one, corresponds to the median colour vector. Such a vector 
gives the three RGB components of the output colour of the 
filter. 

Experimental results 
Since noise filtering techniques are designed to enhance 

the image quality, we chose to discuss the performance of the 
method we propose regarding the two following criteria : 
criterion 1 that considers visual impression and criterion 2 that 
considers objective measures. Our adaptive median filter and a 
classical median filtering approach based on a bit-mixing 
paradigm have been applied to the original colour image of 
Figure 1. 

Figure 8 shows the evolution of the adaptive median filter 
for different threshold values used during the computation of 
the colour distance map. Figure 9 shows the evolution of the 
classical median filtering approach for different sizes of the 
filtering window. 
 

 

a.   b.   c.   

d.   e.   f.   
Figure 8. Results of adaptive median filter, when the threshold is respectively equal to 10 (a), 20 (b), 30 (c), 40 (d), 50 (e) and 60 (f) during the 
computation of the colour distance map 



 

 

 

a.   b.   c.   

d.   e.   f.   
Figure 9. Results of median filtering based on the bit-mixing paradigm respectively with a size of filter window equal to 3 × 3 (a), 5 × 5 (b), 7 × 7 (c), 9 × 9 
(d), 11 × 11 (e) and 13 × 13 (f) 

Regarding criterion 1, we can clearly see that the adaptive 
median filter performs best. Small details and fine spatial 
structures of the original image are well preserved even for 
high values of the threshold used during the computation of the 
colour distance map. For example, Figure 8c shows that the 
green background is really smoothed as there is almost no high 
colour difference in this area of the original image and all 

details of feathers are preserved on the owl. On the contrary, 
results visualized in Figure 9 illustrate limitations of classical 
techniques for which the size of the filtering window is 
constant whatever the features of data to be processed. For 
example, Figure 9b shows that, even for a small size of the 
filtering window, fine details are degraded. Feathers are too 
strongly filtered and the image appears blurred. 
 

a.   b.   c.   

d.   e.   f.   
Figure 10. Top: absolute error of median filtering based on the bit-mixing paradigm respectively with a size of filter window equal to 3 × 3 (a), 7 × 7 (b) 
and 13 × 13 (c). Bottom: absolute error of adaptive median filtering when the colour distance map is computed respectively with a threshold equal to 10 
(d), 30 (e) and 60 (f) 

 



 

 

a.   b.   c.   

d.   e.   f.   
Figure 11. Top: square error of median filtering based on the bit-mixing paradigm respectively with a size of filter window equal to 3 × 3 (a), 7 × 7 (b) and 
13 × 13 (c). Bottom: square error of adaptive median filtering when the colour distance map is computed respectively with a threshold equal to 10 (d), 30 
(e) and 60 (f) 

Regarding criterion 2, measures such as absolute error 
(AE) and square error (SE) that quantify differences between 
two digital images have been used. The AE and the SE are 
given by : 

( ) jiji OIji, ,,AE −=  (3) 

( ) ( )2,SE ji,ji, OIji −=  (4) 

where Ii,j is the value of the pixel (i, j) of the input image and 
Oi,j the value of the pixel (i, j) of the filtered (output) image. 
For RGB images, AE is computed as the mean over channels 
and SE as the Euclidean norm over channels. 

Figure 10 and Figure 11 respectively present the AE and 
the SE between the original test image (Figure 1) and different 

filtered versions. It correlates with the previous observations 
and the visual impression. Our adaptive technique preserves 
fine details while techniques with a fixed window size do not. 
Figure 10a and Figure 11a show that even with the smaller size 
of the filtering window the relevant information is degraded. 

When the size of the filtering window is locally adapted to 
the spatial organization of images, textured areas are more 
efficiently preserved. The highest differences between the 
original image and the filtered one are concentrated in smooth 
areas where colour differences are small (see Figure 10e and 
Figure 11e for example). It means that an adaptive technique is 
better in a perceptual point of view and for signal processing 
considerations. 
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Figure 12. Comparative results from the original colour image in Figure 1. (a) and (c) : the filtering strength is increased. (b) and (d) : for a given filtering 
strength, the rate of colour impulse noise is increased. 



 

 

 
For a global quantitative comparison of the performance 

of the filters we can mean the AE and mean the SE in order to 
respectively obtain the mean absolute error (MAE) and the 
mean square error (MSE) expressed by : 
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where N, M characterize image size. Figures 12a and 12c show 
the evolution of the MAE and the MSE normalized values for 
both compared methods. Obviously the normalized MAE and 
MSE values increase when : 
1. the threshold value, used during the computation of the 

colour difference map, increases in our adaptive 
technique, 

2. the size of the filtering window increases in the classical 
approach. 

At first glance, performances of the two filtering methods seem 
very similar. But plots of Figures 12a and 12c must be 
compared to each other while keeping in mind that they do not 
take into account the spatial repartition of differences. As 
previously explained and as illustrated by Figure 10 and by 
Figure 11, the two filtering methods do not affect the same 
parts of the original image. More precisely, for a given size of 
the filtering window used in the classical approach, it is 
possible to find a threshold value in our adaptive technique that 
leads to similar MAE and MSE (for example at a size of 7 × 7 
corresponds a threshold value equal to 30). Similar MAE and 
MSE indicate that the global differences between original 
image and its filtered version are similar but do not precise the 
spatial distribution of differences. As clearly shown by 
Figures 8, 9, 10 and 11, such a spatial distribution of 
differences is extremely important regarding the quality and the 
performance of the filtering method. 

Plots of Figures 12b and 12d show the variation of the 
normalized error criteria when the density of noise increases. 
Two parameters that lead to similar MAE and MSE from the 
noise free original test image have been chosen. For the 
classical median filtering method, the size of the filtering 
window has been set up to 7 × 7 and, for our adaptive median 
filtering method, the threshold value for the computation of the 
colour distance map has been set up to 30. The colour impulse 
noise rate indicates the absolute value by which the concerned 
pixel is changed. In Figures 12b and 12d we can clearly see that 
our adaptive approach performs best when the noise rate 
increases. The adaptive technique we propose combines better 
MAE and MSE with the preservation of fine details of the 
image to process. 

Conclusion 
An adaptive median filtering method for colour images 

has been described and analyzed. The proposed method is 
based on the computation of a colour distance map that allows 
the adaptive control of the width of the filtering window. The 
problem of colour ordering necessary to determine the median 
vector is overcame by using a bit-mixing paradigm. 

The achieved results show excellent properties as well as 
regarding visual appearance as objective quality measures. Fine 
details and small structures are better preserved by the adaptive 

method we propose than by its non-adaptive form. Moreover 
our adaptive method is simple to implement and very efficient. 
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