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Abstract 
This study describes the development of a similarity index 

for comparing the quality of a lossy compressed spectral image. 
The index is based on the structural errors that are computed 
between the original spectral image and the spectral image 
compressed in a lossy manner. The index is an average of the 
local indices obtained from using a three-dimensional sliding 
window over the images. We compare the performance of the 
new index to the two-dimensional index. The main advantage of 
the new index is that it can detect both structural changes from 
spatial domain and color changes from spectral domain. It has 
several parameters and they can be used to adjust the 
sensitivity of the index. 

Introduction 
Multispectral images are available nowadays for different 

purposes. Their applications increase due to the development of 
in the spectral imaging systems. Usually geoscience, remote 
sensing and quality control systems have been the main source 
of multispectral images, since RGB space does not provide the 
sufficient color information needed for their proper 
exploitation. The raw format of these images requires large 
amounts of storage space, and therefore a lot of efforts are 
focused to achieve optimal compression techniques for them 
[1]. 

Even though the capacities of storage media and 
communication channels grow the research concentrates on 
providing better and better quality. Digital images are subject 
to a wide variety of distortions during acquisition, compression, 
transmission, processing and reproduction. These may result in 
degradation of visual quality. If the observer of images is a 
human being, the only trustworthy method of estimating the 
image quality is through visual assessment. However, in 
practice subjective quantification is mostly inconvenient, time-
taking and expensive. Finding an objective image quality 
assessment that can automatically estimate image quality has 
been the goal of many researchers [1-7]. 

There are a number of qualitative measures for gray scale 
images and RGB color images, but for multispectral images 
such measures are rare. Such an objective quality metric can 
play a variety of roles in image processing systems. First 
application is to dynamically monitor and adjust image quality 
during transmission of visual data in dependence of the 
conditions that a communication channel provides. Second 
implementation is to optimize algorithms and parameters of 
different compression techniques. Third, it can be used to 
benchmark image processing systems or algorithms, helping in 
decision making about the usefulness of compression models. 

Image quality metrics can be classified according to the 
presence of a reference image, with which the observed image 
is to be compared. In first place the reference image is known 
and the metrics are working comparing both images. This is 

used in most approaches and they are known as full-reference. 
In many practical cases, however, the original picture is not 
known. This situation is known as no-reference, or “blind” 
quality assessment approach. In the third type of methods the 
reference picture as partially available in the form of extracted 
features. They are available as side information to help estimate 
the quality of the distorted picture. This case is popular as 
reduced-reference quality assessment. This study focuses on 
full-reference image quality approach. 

It is a widely adopted assumption, that an image whose 
quality is being evaluated can be presented as a sum of an 
undistorted reference signal and an error signal. Every 
compression algorithm leads to certain types of errors – color 
shifts, blurring, blocking, and noise. The loss of perceptual 
quality is usually described as the level of visibility of these 
errors. The simplest and most widely used full-reference metric 
implementing this concept are the mean squared error (MSE), 
computed by averaging the squared intensity differences of 
original and distorted image pixels, followed by the related 
quantity of peak signal-to-noise ratio (PSNR), which 
objectively quantifies the strength of the error signal. They are 
simple to calculate and have clear physical meaning. But two 
distorted images with very different types of errors may have 
the same MSE and it is well known that some errors are much 
more visible or irritating than others. Most assessment 
approaches based on perceptual image quality attempt to 
weight different aspects of these errors according to their 
visibility. They rely on determined human visual system (HVS) 
models stated on psychophysical measurements of humans and 
physiological measurements of animals [4]. 

Most perceptual quality assessment models include similar 
stages, although they may differ in details – pre-processing, 
CSF filtering, channel decomposition, error normalization and 
error poling. In the first stage (pre-processing) a variety of 
basic operations are performed to eliminate known distortions 
from the images compared. These include scaling and aligning 
of original and distorted signals; transformation from one color 
space to another if needed; transformation of digital pixel-
values of the image to luminance values of pixels on the 
display device; low-pass filtering, simulating the point spread 
function of the eye optics; some modification simulating light 
adaptation by the eye. The second stage (CSF Filtering) 
implements weighting the signal to the contrast sensitivity 
function (CSF) that describes the sensitivity of HVS to 
different spatial and temporal frequencies. In the third stage 
(channel decomposition) images are usually divided into 
subbands that are sensitive to spatial and temporal frequency 
and orientation. This is believed to be related to the neural 
response in the primary visual cortex. During the forth stage 
(error normalization) the difference between the reference and 
distorted signals in each channel is obtained and normalized 
according to some masking model. These try to implement the 
decrease of visibility of one kind of image components in 



 

 

dependence of the visibility of other components presented 
using certain visibility thresholds. The final stage (error 
pooling) is combining the normalized error signals from 
different channels over the spatial dimension of the image. 

Although, this approach to the problem has found 
universal acceptance, it is known that there are limitations, 
mainly coming from the complexity and high nonlinearity of 
HVS, leading to a significant number of assumptions and 
generalizations. The most fundamental problem is the 
definition of image quality. In particular it is questionable 
whether error visibility is equal to loss of quality, as some 
distortions may lead even to better quality. The second is the 
suprathreshold problem, connected with the levels at which a 
stimulus is just barely visible. Very few psychophysical studies 
have satisfyingly proved that such near-threshold models can 
be generalized to characterize perceptual distortions. The third 
problem is known as natural image complexity. It is based on 
the fact, that most psychophysical experiments are conducted 
using relatively simple patterns. These are much simpler than 
real world images, which can be described as a superposition of 
large number of simple patterns. Next there is the decorrelation 
problem, which comes from the assumption that errors at 
different locations in an image are statistically independent 
when using a metric for spatial errors. This would be true if 
processing prior to pooling eliminated dependencies between 
the input signals. It has been shown that for natural images 
after channel decomposition the intra- and inter- channel 
coefficients are highly dependent. And at last this is the 
cognitive interaction problem. It is widely known that 
interactive visual processing influences the perceptual quality 
of images. Prior information regarding the image content, 
different instructions and attention or fixation also may affect 
the evaluation of the image quality. These metrics are not well 
understood and are difficult to quantify. 

SSIM Index 
The signals of natural images are highly structured, their 

pixels exhibit strong dependencies and these carry important 
information about the structure of the objects in the visual 
scene. In [2] a new approach is proposed, the motivation of 
which is to find a more direct way to compare the structures of 
the reference and distorted signals. It is based on the 
assumption that the human visual system is specialized to 
extract structural information from the scenes observed. 
Therefore a measure of structural information change can 
provide approximation to perceived image distortions. The new 
philosophy in [4] has three main distinguishing features. First, 
it considers image degradation as perceived changes in 
structural information variation. Second, unlike the error-
sensitivity approach, this new paradigm is a top-down approach 
in correspondence with the hypothesized functionality of the 
overall HVS. This avoids the suprathreshold problem and the 
cognitive interaction problem is also reduced. Third, it 
proposes to evaluate the structural changes between two signals 
directly. This way, the problems of natural image complexity 
and decorrelation is avoided. 

The luminance of an object in the picture being observed 
is the product of the illumination and the reflectance. The 
structure of the objects in the scene should be independent of 
the illumination; consequently to obtain the structural 
information in an image the influence of the illumination must 
be separated. Since luminance and contrast vary across a scene 
the local brightness and contrast are used in definitions. 

First the luminance of each signal is compared. The mean 
intensity for signal x is: 
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The luminance comparison function is then l(x,y) and it is 
a function of mean intensities �x and �y. 

Second, the mean intensity must be removed from the 
signal, resulting in the signal x-�x. The standard deviation is 
used as an estimate of the contrast of the signal: 
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The contrast comparison function c(x,y) is then based on 
the comparison of �x and �y. 

Third, the signal is normalized by its own standard 
deviation, so that the two signals to be compared have unit 
standard deviation. The structure comparison s(x,y) is 
conducted on these normalized signals (x-�x)/�x  and (y-�y)/�y. 

Finally, the three components are combined to obtain an 
overall similarity measure: 

S(x,y) = f (l(x,y), c(x,y), s(x,y)) (3) 

An important point is that the three components are 
relatively independent. It is needed that these functions satisfy 
some conditions: 

1. Symmetry: S(x,y) = S(y,x). 
2. Boundedness: S(x,y) ≤ 1. 
3. Unique maximum: S(x,y) = 1 only and if only x = y. 
Luminance comparison in [2] is defined: 
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where the constant C1 is included to avoid instability when �x
2 + 

�y
2 is close to zero. Typically C1 << 1 and it is seen that 

equation (4) obeys the three properties above. This expression 
is qualitatively consistent with Weber’s law – the HVS is 
sensitive to the relative luminance change, not the absolute. 

For the contrast comparison [2] a similar function is 
defined: 
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where C2 is a similar small constant like C1. This definition 
again satisfies the three conditions listed above. Also it is 
consistent with the contrast-masking feature of the HVS, 
because it is less sensitive to contrast change in the case of high 
base contrast than in the case of the low. 

Structure comparison is conducted after luminance 
subtraction and variance normalization. It has been proved that 
the correlation between (x-�x)/�x and (y-�y)/�y is equal to the 
correlation coefficient between x and y: 
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where C3 is a small constant presented to avoid instability when 
denominator is close to zero. Geometrically the result is given 
as the cosine of the angle between the vectors x-�x and y-�y.  

Finally, these three comparisons are combined to obtain 
the resulting similarity measure, called in [4] SSIM index: 

SSIM(x,y) = [l(x,y)]� [c(x,y)]� [s(x,y)]� (7) 

where � > 0, � > 0, � > 0 are parameters used to adjust the 
relative importance of  the three components. This definition 
satisfies the conditions stated above.  



 

 

Multispectral Image Assessment Using 
SSIM Index 

In image quality assessment it is known to be useful to 
apply the SSIM index locally rather than globally, because of 
several reasons: the statistical features if images are spatially 
nonstationary; image distortions may also be space-variant and 
varying in dependence of image statistics; because of HVS 
features, only a local area in the image can be perceived with 
high resolution; localized measures can bring to more 
informative spatially varying quality map of the image. 

A spectral image consists of many grayscale images of the 
same scene taken at different wavelengths. Attention should be 
paid to the difference in spatial and spectral dimensions, since 
they provide totally different information contents. In this study 
two ways of image quality assessment using SSIM are 
implemented. In the first case we apply the original SSIM 
algorithm to every band of the image consequently and average 
the result. In the second case we extend the SSIM algorithm to 
three dimensional SSIM index and apply it. The common 
approach for both cases is the use of Gaussian weighting 
windows function w = {ωi|i = 1,2,…,N}, normalized to unit sum 
(Σωi = 1) for estimating the local SSIM. The aim of this is to 
escape the undesirable “blocking” artifacts which appear when 
calculating SSIM within local window. The estimates of local 
statistics are then modified accordingly as: 
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For the experiments with two-dimensional SSIM we used 
11 x 11 circular-symmetric Gaussian weighting function. The 
coefficients in the comparison functions are determined as 
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where L is the dynamic range of pixel values (255 for 8-bit 
grayscale ‘images) and K1, K2 << 1 are small constants. 
Assuming that C3 = C2/2 and α = β = γ = 1 the result in the 
specific form for the SSIM is: 
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For the second case we have to define three-dimensional 
Gaussian weighting function. According to [12] it is given by 
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This way a sliding cube of size 11 x 11 x 11 is used to 
process the spectral image and the three components of the 
quality measure are computed for each pixel: the brightness, 
contrast and structure. The small constants are chosen so to 
satisfy Eq. 11, but we find that in our current experiments, the 
performance of the SSIM index algorithm is fairly sensitive of 
these values, so some optimization there is needed. For the 
calculation of local SSIM indices we use the general form of the 
expression Eq. 7. 

In practice, a single overall quality measure of the entire 
image is required. Thus, a mean SSIM (MSSIM) index can be 
used to evaluate the overall image quality defined as 
 

 

 
 
  
Figure.1. Sample PCA + SPIHT images compressed to different quality levels. Original images (a) “Fruits and Flowers”, (b) “Jussi”, (c) “Colorchecker”,    
(d) “Icon”. Compressed to (e) 0.0005 bits/pixel, (f) 0.0025 bits/pixel, (g) 0.001 bits/pixel, (h) 0.0001 bits/pixel. (i), (j), (k) and (l) show error maps of the 
compressed images compared to the originals applying two dimensional SSIM index to every band of the image and meaning the result. 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 
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where X and Y are the reference and the distorted images, xj 
and yj are the image contents of the jth local window, M is the 
number of local windows of the image. 

Experimental Result 
We apply our image quality assessment algorithm to 

distorted images created from the same original image, using 

the same type of distortion, based on a certain compression 
method.  

It is known from publications [1,12] that one of the best 
results in spectral image compression gives the usage of PCA 
compression in spectral domain and wavelet compression in 
spatial domain. From all wavelet based encoders we used the so 
called SPIHT, because it is easy to use and achieves good 
results at high compression ratios [1].  
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Figure.2. Plot of the 2D and 3D SSIM index results versus the bitrate. Each sample point represents one test image. (a), (c), (e) and (g) – using two 
dimensional SSIM index; (b), (d), (f) and (h) – using three dimensional SSIM index. (a) and (b) – image “Fruits and Flowers”, (c) and (d) – image “Jussi”,  
(e) and (f) – image “Colorchecker”, (g) and (h) – image “Icon” 



 

 

For the tests were used 4 spectral images consisting of 81 
components - from 380nm to 780nm through 5nm. The spatial 
size of the images was 120x200 pixels. Each image was 
compressed with PCA in spectral domain and SPIHT in spatial 
domain to different ratios and after that restored and compared 
with the original one using SSIM index. The PCA compression 
ratios were from 8 (10 principle components kept after PCA) to 
80 (1 principle component kept after PCA) and SPIHT 
compression ratios from 1 to 1000. Thus the common bitrate 
after compression was between 10-1 – 10-5 bpp leading to a total 
set of 336 pictures. 

It is important to remember, that a multispectral image can 
not be observed directly. Every component can be shown as a 
grayscale image after scaling and rounding or the whole image 
must be converted to another color space that could be 
observed by humans (RGB). Another important feature comes 
from the cuboid structure of the spectral images. Although the 
two spatial directions represent the structure of the image, and 
the third (spectral) direction – the color, these are not 
independent. It is proved in [4] that changes in structure lead to 
changes in color and vice-versa. All original and compressed 
images and error maps were converted to RGB color space for 
the purpose of observation and afterwards visual assessment 
tests. 

The four images we used during testing have different 
content and behavior according to SSIM. This comes both from 
their colorfulness and their structure. The “Colorchecker” is an 
artificial image consisting of many sharp edged, equal colored 
fields. The “Jussi” picture contains a not much detailed human 
face, which colors and shades are one of the most difficult 
things for interpretation. “Fruits & Flowers” is a natural image, 

which is not high detailed, but is very colorful, covering big 
diapason of spectra. “Icon” image consists of just few colors, 
but a lot of small details, which structure could be lost during 
compression. Analyzing the plots in Fig. 2 we can observe the 
main features of 2D and 3D SSIM in spectral imaging.  

To check the correctness of the analytical results received 
we decided to perform visual assessment tests (Fig.3). For the 
tests 108 images, grouped in 4 sets, were chosen out from these 
336 in such a way, that they cover the whole diapason of 
reasonable color and structure compression levels used in SSIM 
image testing. Some of the images with similar characteristics 
and obviously no quality difference were skipped for the ease 
of the observers. Subjects viewed trying to keep the 
recommendations of ITU-R BT.500 [11], although some new 
proposals about visual assessment appeared lately [8,9]. The 
observation of images was made from comfortable viewing 
distances that allow the data to reflect natural viewing 
conditions. People were asked to give their opinion about every 
image on continuous linear scale that was divided into ten equal 
regions marked with adjectives “Awful”, “Very Bad”, “Bad”, 
“Not So Bad”, “Poor”, “Reasonable”, “Reasonably Good”, 
“Good”, “Very Good” and “Excellent”. The 4 sets of pictures 
were assessed twice, in normal and reverse order of the 
pictures, as recommended in [9]. The first picture in a set was 
the original one, but it was also included 2 more times in each 
set, so that subjects didn’t have information about it. This way 
we can obtain the mean opinion score about the originals also. 
All the results for every image were averaged by the number of 
subjects and number of observations. 
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Figure.3. Scatter plots of subjective mean opinion score (MOS) versus 3D SSIM index for different images 



 

 

Discussion 
a) 2D SSIM accesses the image band by band and 

obtains the consecutive error maps, which are then averaged to 
obtain an overall error map. Although this way is implementing 
only the structure similarity test, it calculates indirectly color 
similarity. As mentioned above, compressing only spectral 
domain leads to change in color, but also to change in structure, 
that is observed with 2D SSIM (the first points in every 
principal component (PC) with no spatial compression). On the 
other hand 3D SSIM calculates error maps in both spectral and 
spatial domains and takes into account color and structure 
similarity. This is the reason why the differences between first 
dots of every principal component (no spatial compression) are 
bigger in 3D case than 2D case (Fig.2). 

b) The plots of 2D SSIM go down faster with 
increasing spatial compression because of the same reasons. 3D 
SSIM index observes the absence or presence of color in the 
region during image error acquisition in addition to similarity 
changes. Comparing each line in plots between the 2D and 3D 
variants it is obvious that if structure is changed but color is 
somehow preserved in restored image, then the quality in 3D 
case is decreasing slower with increasing the level of spatial 
compression. Although spatial compression changes only 
structure of images, it also leads to color errors on most places, 
which can be understood from  the error maps in Fig.1 

c) According to the results we have a color-oriented 
similarity metric that tolerates the preservation of color in 
restored images after that type of used compression methods. 
This can be observed most clearly from plots of color images in 
Fig.2 in the case when only one PC is kept after PCA 
compression. In this situation, according to 3D SSIM, pictures 
are so much color-distorted, that the additional spatial 
compression almost cannot worsen them. In addition it can be 
seen from the pairs of pictures on Fig.2, where SSIM gives 
equal indices to image with less spatial compression (preserved 
structure) and bigger color loss on the one hand, and on the 
other image with distorted structure but somewhat preserved 
color range. 
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