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Abstract 
Multispectral images of natural scenes have been used to 

obtain a recovery matrix that transforms directly R, G, B values 
to spectral radiance without using linear models for spectral 
reflectances and illuminants. The R, G, B are simulated digital 
counts from a standard CCD camera. This recovery method 
had not been tested in natural scenes with uncontrolled 
illumination and for spectral radiance. We have used three 
different test data sets to check the method’s accuracy, and 
three different quality measures to test the similarity between 
recovered and original spectral radiances (Goodnes-of-Fit, 
Root-Mean-Square-Error and ∆E*ab colour difference). With 
this simple colorimetric system it was found that natural 
spectra could be recovered with a quality that is adequate for 
many applications. 

Introduction  
Multispectral imaging attempts to recover radiance or 

reflectance spectra at each point of a scene of interest from 
limited spectral data [1],[2]. Typically, a multispectral system 
consists of a digital camera coupled to a range of spectrally 
broad-band filters. If the number of filters is sufficiently large 
and their bandwidths are sufficiently small, as with a 
hyperspectral imaging system [3], spectral data can be 
recovered exactly [3],[4]. But with just a few broad-band 
filters, or in the limit with the three native sensors of an RGB 
camera, spectral recovery presents an ill-posed problem.  

Many multispectral-imaging methods exploit the 
underlying smoothness of signal spectra [5], with illuminants 
[6] and spectral reflectances [7] represented by low-
dimensional models. If the number of coefficients is more than 
the number of camera-response values, then the latter may need 
to be effectively increased by introducing coloured filters or by 
imaging the scene under different illuminants [8], in order to 
achieve the same numbers of responses and coefficients. 

Instead of using low dimensional models, however, the set 
of signal spectra may be estimated directly from the set of 
camera responses. This “direct-mapping” method has been 
applied successfully in specific conditions such as illuminant 
estimation [2] and spectral analysis of artworks [8]. But it is not 
clear whether the technique is efficient for natural spectra, 
particularly in conditions where the illumination is 
uncontrolled, as with natural scenes. 

The aim of the present work was to estimate 
computationally the quality of spectral recovery of natural 

radiances based on a direct-mapping method, in which the only 
information available was from the three RGB sensors. The 
natural radiance spectra were taken from a hyperspectral 
database. With this simple system it was found that spectra 
could be recovered sufficiently accurately for many practical 
applications.  

Methods 
Hyperspectral data from thirty scenes, fifteen from rural 

and fifteen urban environments, were selected from a high-
spatial-resolution database [9]. The data were obtained with a 
Peltier-cooled digital monochromatic camera with spatial 
resolution 1344 × 1024 pixels (Hamamatsu, model C4742-95-
12ER, Hamamatsu Photonics K.K., Japan) with a fast-tunable 
liquid-crystal filter (VariSpec, model VS-VIS2-10HC-35-SQ, 
Cambridge Research & Instrumentation, Inc., MA, USA) 
mounted in front of the lens, with infra-red blocking filter. 
Spectral radiances at each pixel element were obtained. The 
accuracy checking procedure was done by the use of a 
telespectroradiometer (SpectraColorimeter, PR-650, 
PhotoResearch Inc., Chatsworth, Calif.), whose calibration was 
traceable to the National Physical Laboratory. 

The RGB digital camera whose spectral sensitivities were 
used to compute the camera responses had spatial resolution 
1280 × 1024 pixels (QImaging, model Retiga 1300, QImaging 
Corp., Canada) and 12 bits intensity resolution per channel. 
Several scene fragments were used for the training and test sets. 
The “matrix-training set”, used to obtain the recovery matrix, 
was formed from 30 different fragments taken from the 30 
scenes, each fragment of size 151 × 151 pixels. Each radiance 
spectra was defined over 400-700 nm in 10 nm intervals. These 
spectra were interpolated at 5-nm intervals to match the 
sampling interval for the camera spectral sensitivities, so each 
radiance spectra had 61 spectral values corresponding to 
different wavelengths.. The total number of spectral radiances 
in this matrix-training set was 684030. The influence of any 
possible correlation between adjacent pixels was tested for by 
sampling half of the scenes over alternate pixels vertically and 
horizontally (i.e. every fourth pixel) and comparing the 
recovered radiance spectra with those obtained from the 
unsampled scenes. The two sets of recovered signals (whose 
distributions were non-normal by the Kolmogorov-Smirnov test) 
were significantly different for all filter combinations (p < 0.001, 
Wilcoxon signed rank test).  

The camera responses hi to these spectra (i = 1, 2, 3 for 
red, green, and blue sensors, respectively) were computed as 



 

 

follows. At each pixel, suppose that S(λ) is the signal spectrum; 
Ri(λ) is the camera spectral sensitivity for each sensor i, where 
λ = 400, 405, …, 700 nm. Then 

  
 
     (1) 
 

 
The computed camera responses were combined to form 

the response matrix H for the entire radiance set. The matrix H 
had then dimensions 3 x 684030. The matrix training set 
formed the S matrix of spectral radiances, of size 684030x61. 
The recovery matrix D was then computed from the 
pseudoinverse H+ of H by 

 
 D = SH+ .     (2) 

 
If H has full rank, then H+ = (Ht H)-1

�Ht, where Ht is the 
transpose of H. The recovery matrix had dimensions 61x3, and 
was used to compute the recovered radiances from three 
different sets of computed camera responses, as explained 
below.  

Three additional data sets were used for verification of 
the method’s accuracy. Test set 1 was formed using 30000 
randomly selected pixels of the matrix-training set. For this test 
set, then, we expect the best results, since the radiances 
included in it were also used to compute the recovery matrix D. 
Test set 2 was formed from 30000 additional pixels of the same 
scenes used to obtain the matrix-training set, but with none of 
the pixels in common with those of the matrix training set. And 
test set 3 was formed by 30000 pixels from other scenes (close-
up views of natural scenes not used in the matrix-training set). 
The recovered spectra were computed as S1=DR1 from the 
calculated camera responses R1 to these test sets.  

The goodness-of-fit coefficient (GFC), defined as the 
cosine of the angle between the recovered signal  S1 and 
original signal S in the 61-dimensional space. This commonly 
used measure of spectral similarity has the advantage of not 
being affected by scale factors. The other measures were root 
mean square error (RMSE) and CIELAB color difference 
∆E*ab, calculated with reference to the color signal of a white 
patch included in the scene for illuminant estimation. For 
spectral reflectances, an equienergy illuminant was assumed for 
the evaluation of colour differences, since the aim of the work 
is to compare results obtained with different radiance test sets.  

Results and Comment 
Figure 1 shows four representative examples of spectral-

radiance recovery (two radiances belong to test set 1 and the 
other two to test set 2). The recovered radiances were computed 
using the calculated camera responses R1 for the original 
radiance spectra and the recovery matrix D shown in equation 
(2).  Table 1 shows the mean (and standard deviation) of GFC, 
RMSE and ∆E*ab values calculated across all spectral samples 
(30000) for each test set. The mean GFC value is greater than 
0.99 for test set 1. The values of the mean colour differences 
∆E*ab, all less than 1.0, imply that there would be little if any 
noticeable difference between scene fragments corresponding 
to recovered and original signals, even with examples such as 
the one in Fig. 1, top right. This supports the hypothesis that if 
a visual comparison was made between original and recovered 
scene fragments, no noticeable differences would be found by a 
normal colour vision observer.  

 
Table 1. Quality of recovery of spectral radiance from natural 
scenes with an RGB camera. Mean (SD) over 30000 samples 
for test sets 1, 2 and 3 are tabulated for three measures of 
error in spectral recovery. 
  

Test set GFC 
1 0.9920 (0.0057) 
2 0.9567 (0.1017) 
3 0.9745 (0.0443) 
Test set RMSE 
1 0.0015 (0.0013) 
2 0.1860 (0.4439) 
3 0.0023 (0.0020) 
Test set ∆E*ab 
1 0.3711 (0.1541) 
2 0.9112 (0.7859) 
3 0.9829 (0.7289) 

 
Recovery was better for test sets 1 and 3 than for test set 2. 

This was expected, since the recovery matrix was based on test 
set 1. Test set 3 was less varied than test set 2 and the spectra 
included in it were probably more similar to those used in the 
training set, although they corresponded to different scenes and 
different viewing distances. The results are consistent for the 
three different quality measures used excepting for ∆E*ab, 
whch gives worse recovery quality for test set 3 than for test set 
2, while GFC and RMSE give worse recovery quality for test 
set 2.  
 
Conclusions 

Although outdoor natural scenes with uncontrolled 
illumination present particular problems for recovering 
radiance spectra, the combination of the direct-mapping method 
and a commercial RGB digital camera seems to produce 
satisfactory results, with an average colorimetric error ∆E*ab of 
less than unity. These results represent the minimal 
performance that can be obtained with an RGB camera and 
may be improved with the introduction of combinations of 
coloured filters in front of the camera. 

These simulations show that a digital RGB camera and a 
suitable calibration process can produce a spectral capture 
system with accuracy enough for some applications. Probably 
tests made with real data would not give results as good as 
those shown here, due to the presence of noise and problems 
inherent to spectral measurements in natural environments. 
Nevertheless, future work include the possibility of checking the 
accuracy of the recovery process obtained with real camera 
responses. This could be feasible if some natural scenes were 
captured with a digital RGB camera and simultaneously pixel-
by-pixel spectra for the same scene were measured by a 
hyoerspectral system such as that described in the Methods 
section.    
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Figure 1. Normalized spectral radiances recovered for two members of test set 1 (upper left GFC = 0.9978, upper 

right GFC = 0.9795) and two members of test set 2 (lower left GFC = 0.9984, lower right GFC = 0.9505). Original spectra 

are shown by continuous lines, recovered spectra by broken lines. 
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