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Abstract 

In this paper, we propose an efficient algorithm for 
highlight removal in endoscope images. According to the 
analysis the endoscope images are presented by several kinds 
of regions and the dichromatic reflection model is not valid 
for the whole image. However it is possible to segment the 
image using machine learning algorithms and extract only 
the body and highlight reflection regions for which the 
dichromatic reflection model is relevant and then the 
highlight removal technique is applied. We present the 
experimental results confirming the method's feasibility. 

Introduction  
The highlight removal technique reduces the influence 

of the light source in the highlight region and gives the 
possibility to see the color of the surface. This improved 
color reproduction is especially important in medicine in the 
analysis of endoscope images. An existence of highlights 
does not prevent doctors making a correct diagnose. 
However highlights are an undesirable factor when medicine 
images are merged together to obtain a mosaic image.  

There are several proposed approaches of highlight 
analysis and highlight removal in color images [1-3] and 
spectral images [4]. They are based on the analysis of body-
reflection and highlight clusters. However the algorithms are 
lacking in sophisticated unsupervised machine learning 
methods which are efficient and relevant for clustering. The 
machine learning methods are used in [5, 6] however these 
studies are based on the dichromatic reflection model while 
the endoscope images have a more complicated structure. 

The highlight removal technique is presented in our 
previous work [6]. The technique is based on a clustering 
method that is a mixture of probabilistic principal component 
analyzers [9], separating all pixels in a spectral domain into 
body-reflection and highlight reflection clusters, and 
providing KNN-mapping (k-nearest-neighbors mapping) of 
the highlight cluster’s pixels in the line defined by the 
direction of the first body-reflection cluster’s eigenvector. 
Though the method’s feasibility is demonstrated with 
spectral images the method has its drawbacks. The method is 
time and memory demanding due to the use of the KNN 
algorithm.  In addition, the method is not very accurate 
because KNN-mapping does not provide the correct direction 
for the projection. It is shown in [2] that the correct mapping 
for the dichromatic reflection model should be done along 
the direction which is parallel to the first eigenvector of the 
highlight cluster. In turn, this direction is parallel to the 
vector of the light source in the spectral domain. 

Our purpose is to generate the image which reproduces 
the endoscope image where highlight is removed and the 
color of the object is reproduced instead of highlight.   In the 

next sections we describe the algorithm based on the 
Gaussian mixture model (GMM) used for clustering and 
mapping using the illumination vector. 

Algorithm 
Analysis shows that the data of the endoscope image is 

represented by highlight, body-reflection and shade regions. 
The shade regions include a shade of the analyzed object as 
well as a shade surrounding the highlight region. The last 
shade occupies a small area. The color of the shade varies 
significantly in comparison with the background pixels and 
does not have a smooth transition with the color of the body-
reflection cluster. In addition, the clustering algorithms 
identify the shade as a separate cluster or clusters. This 
violates the assumption about the dichromatic reflection 
model.  It is supposed in this study that the reflection model 
is not dichromatic for the entire endoscope image but if only 
true background and highlight pixels are taken, then the 
dichromatic reflection model is a realistic assumption. 

The algorithm is presented in Algorithm 1. According to 
the color properties of the endoscope image the algorithm 
first implements the clustering procedure.  If the given 
number of clusters is two then the algorithm finds the body-
reflection and non-body-reflection clusters. The latter 
includes a highlight and shade. This is because the body-
reflection cluster is usually well-defined. It contains the most 
pixels and represents a compact area of input space. The non-
body-reflection cluster cannot directly be used because a 
mixture of pixels from the shadow and highlight changes the 
first eigenvector of the highlight cluster and gives an 
incorrect mapping. The solution is that the algorithm should 
use the additional pixel clustering procedure for the non-
body-reflection cluster. The procedure involves a number of 
clusters defined by testing the endoscope image. If the 
number of clusters is small then a part of the shadow 
recognized as a highlight produces distorted mapping. When 
the number of clusters is too large then the highlight area is 
separated into smaller parts and only one of the highlights is 
removed.  

The result of two sequential clustering procedures is the 
clusters corresponding to the given data set and their 
parameters. The problem is to decide which two clusters 
from the cluster set are the body-reflection and highlight 
clusters. For this, the features of the clusters need to be 
selected. A feature of the body-reflection cluster is a 
maximum number of pixels among all clusters or, in other 
words, a maximum of a prior probability of clusters. A 
feature of the highlight cluster is a maximum of the norm of 
the mean vector. 



 

 

Algorithm 1: The highlight removal algorithm 
 

 
The algorithm is implemented the following steps. In 

step 1 PCA is used to reduce the data dimensionality and to 
obtain three principal components (PCs). This number of PCs 
for endoscope images is suggested in [8]. In step 2 the GMM 
algorithm [7, 9] is applied to find the clusters in the space 
spanned by three eigenvectors. Only two clusters are utilized 
by the algorithm in step 2 and the body-reflection cluster is 
one of them. This cluster is characterized by the most pixels. 

Therefore, the largest value of the prior probability after 
using the GMM algorithm characterizes the body-reflection 
cluster (step 3). In step 4 the algorithm separates the non-
body-reflection cluster into several smaller ones and only one 
of them, which has the maximum norm of the mean vector, is 
a highlight cluster (step 5). After the clustering procedure, 
pixels belonging to the highlight and body-reflection clusters 
are marked by labels. Therefore, highlight and body-
reflection pixels are known for their input space and its 
subspaces.  
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Figure 1. The illustration of the algorithm work with a synthetic dataset. 
Initially the data contains highlight, body-reflection and shade clusters. 
After classification only body-reflection and highlight clusters are 
considered. The Gaussian mixture model fits the data, and the first 
eigenvector of the highlight cluster is used as a mapping direction for 
the highlight pixels. The pixels are mapped onto the line defined by the 
first eigenvector of the body-reflection cluster (a synthetic data in right 
bottom figure). Note: shade pixels and pixels of body-reflection are kept 
untouched and reproduced as they are.     
 

Owing to the fact that the body and surface reflection 
pixels satisfying the dichromatic reflection model lie on the 
plane, the PCA is used once more to reduce the 
dimensionality of input data (highlight and body-reflection 
pixels) and to obtain two PCs (step 6). The clustering results 
obtained in three-dimensional space are used for the 
dichromatic plane. The correct projection is found by using 
the intersection dot between two lines defined by two dots 
each. The dots of the first line are determined by the mean 
value and the sum of the mean value and the first eigenvector 
of the body-reflection cluster. The second line is defined by 
the value of the pixel being projected and the sum of the 
same pixel value and the first eigenvector of the highlight 
cluster. Finally, highlight pixel mapping is done in the 
direction parallel to the first eigenvector of the highlight 
cluster. The pixels are mapped in the line defined by the 
direction of the first eigenvector of the body-reflection 
cluster (step 7). Fig. 1 illustrates the mapping procedure.  

We will refer to the algorithm based on KNN-mapping 
the KNN algorithm [6] and the algorithm based on the 
mapping using the illumination vector the IM algorithm. 
Algorithm 1 represents the IM algorithm. 

The IM algorithm is fast due to the following reasons. 
The clustering procedure is implemented in three-
dimensional space while the input space is 61-dimensional. 
The GMM algorithm finds two clusters for many samples in 
a very fast way. The GMM algorithm is also fast for 
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7. Map each highlight data point of )|( hϖz onto the 

first eigenvector of the body-reflection cluster 
)|( bϖz  by using the first eigenvector of the 

highlight reflection cluster.  
8. Reconstruct the spectral image and replace only 

highlight pixels by new ones for the original image.  
Reproduce: the spectral image with a synthetic part 
instead of a highlight region in a suitable color system 
(e.g. RGB CIE 1931). 



 

 

separating a reduced number of samples (the non-body-
reflection cluster) into several clusters. KNN-mapping is 
excluded. In addition, the algorithm does not require 
significant memory space. 

The good accuracy of the algorithm is provided by 
mapping in a two-dimensional space based on body- and 
highlight reflection clusters found in three-dimensional space 
(clustering in the two-dimensional space reduces accuracy 
because the dichromatic reflection model is not suitable). In 
addition, the mapping incorporates the illumination vector’s  
direction. 

Experiment 
The experiment was conducted with a real endoscope 

image obtained by using a spectral endoscope [10]. The 
image size is 640x480 pixels and the spectral dimension is 
presented by 61 components taken evenly in the range 400-
700nm.  

To provide fast work only image parts were used in 
analysis and then after highlight removing they were 
embedded in the whole image. This was also needed because 
the common model does not correspond to the dichromatic 
reflection model.  This is due to the spotty shade including 
the varied colors nearby with the highlight regions. Thus, to 
reduce color variations it is better to work with a smaller 
region than with a whole image. This also helps to avoid 
multiple highlights due to variations of the analyzed object 
shape [5]. However, multiple highlights are possible if the 
background pixels have a restricted change of intensity (for 
example, the regions shown in Fig. 3 and Fig. 5). It is 
assumed that the dichromatic reflection model is still valid 
for body-reflection and highlight regions (without shade).    

Fig. 3 shows the result for the image part where KNN 
and IM algorithms were used. The image size is 81x81 and 
61 components. The KNN algorithm does not work with the 
images of the larger size because it would need a larger 
memory space. Twenty iterations were used and two 
Gaussians were initially given for the GMM method used in 
the IM algorithm. After this, the non-body-reflection cluster 
was separated by using the GMM with 30 iterations and 4 
Gaussians ( 42 =M ). These parameters were determined 
experimentally. The same parameters were adjusted for the 
IM algorithm in all tests.  

The computational time for the image region shown in 
Fig. 3 is presented in Table 1 (Matlab 6.5, Intel Pentium III 
Processor, 800 MHz, 512 MB of RAM). 

 
Table 1: The computational time (s)  

KNN IM 
304.62 12.81 

Fig. 4 shows the highlight region (the spectral image 
region size is 41x41 pixels and 61 components) from the 
bottom part of the endoscope image and the result of the 
highlight removal by the IM algorithm. Table 2 shows the 
priors and norms of the means for the Gaussian mixture 
model for the image shown in Fig. 4. In Table 2 and Table 3 
the priors in the second column are given for step 2 of the 
algorithm, where separation was done for two clusters. The 
third and fourth columns of Table 2 and Table 3 show the 
priors and norms for step 4 of the algorithm where four 
clusters were used.  
 

Table 2: The trained model  priors and norms (the IM 
algorithm) 
   Clusters Priors Priors Norms 

 1 0.0986 0.2450 3.8372 
 2 0.9014 0.1919 6.9679 
 3  0.1905 2.2079 
 4  0.3726 4.8449 
 
Table 2 illustrates that the IM algorithm extracts 

features of the body-reflection and highlight clusters. This 
can be clearly seen from the prior probability values and the 
maximum norm of the mean. The computational time for the 
image region shown in Fig. 4 is 3.11 s. The chromaticity 
histogram for this region is shown in Fig. 2. 

 
Figure 2. a) A chromaticity histogram for the region shown in Fig. 4 
(left). b) A chromaticity histogram for the region shown in Fig. 4 (right). 
The highlight dots are seen nearby with the center of the color diagram 
in Fig. 2.a. They are not seen after highlight removal (Fig. 2.b). The 
chromaticity diagram coordinates are r (horizontal) and g (vertical). 

Fig. 5 shows many highlight regions from the central 
part of the endoscope image. The size of the spectral image 
region is 111x101 pixels and 61 spectral components. Table 
3 shows the priors and norms of the means for the Gaussian 
mixture model for the image shown in Fig. 5.  

 
Table 3: The trained model priors and norms (the IM 
algorithm)   
  Clusters Priors Priors Norms 

1  
0.0484      

0.2851    6.1118 

2  
0.9516    

0.0850    4.5245 

3  0.4929    5.0451 

4  0.1369    5.5221 
From Table 3 (column 2) one can see that one cluster 

has a prior value that is significantly greater than the other. 
This determines the feature of the body-reflection cluster.  At 
the same time only one mean vector in the space spanned by 
three eigenvectors has a norm value that is greater than the 
others (Table 3, column 4). Hence, the informative feature 
for the highlight cluster is the norm of its mean vector. The 
computational time for the image region shown in Fig. 5 is 
25.84 s.  

Finally, the regions with removed highlight shown in 
Fig. 4 and Fig. 5 replace the corresponding regions in the 
whole endoscope image (Fig. 6 and Fig. 7). 



 

 

The experimental results demonstrate that the IM 
algorithm removes highlight in the regions of the test image. 
The IM algorithm, less computationally demanding in 
comparison with the KNN algorithm, provides better color 
reproduction replacing a highlight. Further research can be 
done to improve the used features of clusters. For example, 
this can be done for the image in Fig. 5 where the highlight 
features of several clusters have close values (Table 3). 

Conclusion 
It was shown in this study that while body-reflection 

and highlight reflection can be described by the dichromatic 
reflection model in endoscope images, the existence of the 
spotty shade including pixels with different colors destroys 
an assumption about the model and makes the task of 
highlight removal difficult.  

The proposed algorithm, based on machine learning, 
removes highlight in the endoscope image and improves 
color reproduction of the entire image. 

There is no quantitative measure of quality for highlight 
removal. The technique also depends on data that affects the 
algorithm’s performance. However, it is supposed that the 
considered method can be useful in medical applications 
where mosaic images are required. 
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Figure 3. From left to right: RGB-representation of the original image, 
the result of the KNN and IM algorithms, respectively. 

 
Figure 4. From left to right: RGB-representation of the original image, 
the result of the IM algorithm. 

 
Figure 5. From left to right: RGB-representation of the original image, 
the result of the IM algorithm. 

 
Figure 6. RGB-representation of the original endoscope image. 

 
Figure 7. RGB-representation of the spectral image with removed 
highlight by the IM algorithm.  
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