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Abstract
In the case of digital cameras, device dependent values

describe the camera’s response to incoming spectrum of light.
Transformation from one device space to another has to be de-
fined separately in each case. Device dependent values are not
colorimetric and don’t necessarily provide a good starting point
for transformation between device spaces.

We converted the device dependent digital camera RGB val-
ues to reflectance spectra, which is used as the device indepen-
dent color representation. If the spectral power distribution of
original and reproduction are identical, a spectral color repro-
duction is achieved. From spectra, it is possible to calculate re-
sponse in any color space under arbitrary light sources. We cal-
culated the corresponding results also for direct RGB-CIELAB
conversion.

In testing phase we modeled the color calibration of a dig-
ital camera as a regularized polynomial regression problem. In
polynomial regression, strong adaptation of the model to training
data can cause problems. Measurement data includes noise that
has effect on the complexity of the estimated function, especially
when a high order polynomial is used. Effects of overfitting to
training data can be dampened by using regularization methods
[3]. Two regularization methods, Tikhonov regularization and
Truncated Singular Value Decomposition, were tested in order
to reduce overfitting.

We used Munsell Matte color set (1269 samples) and Mac-
beth chart (24 samples) in calibration. Analysis of results for
different training sets show that the ”quality” of the training set
is the most important part of the model. As the size of the train-
ing set becomes larger, the performance of polynomial model
improves. When small training set is used, it must be chosen
carefully. With randomly chosen small training sets polynomial
model is a very unstable method.

Introduction
Digital color cameras capture the spectrum of physical stim-

uli by filtering the incoming color signal through color filters
with different spectral transmittances. In the case of digital cam-
eras (non-colorimetric), the device dependent RGB values de-
scribe this response to color. If we want to transform camera
RGB values to device independent space, we need to define
the mapping separately for each device. This mapping can be
done for example via least-squares regression method. Values
in device independent color spaces like CIE XYZ, CIELAB and
sRGB are light source dependent, so we should calculate sepa-
rate representations for each illumination condition. If we con-
vert the device dependent RGB values to reflectance spectra, by
using spectra it is possible to calculate any needed color infor-
mation using arbitrary light sources.

The goal of this study was to investigate whether
reflectance-estimation method can be used for color camera cal-
ibration. We tested the model using training sets of different

sizes. We calculated the results for polynomial transformation
in explicit spectral reconstruction and in CIELAB reconstruc-
tion. This method has been used for example in [2], [4] and
[5]. Method was evaluated by using a colorimetric measure and
a spectral measure with values from two digital cameras.

Munsell data set was divided into three different sets: train-
ing set, test set and validation set. Training set was used to con-
struct the model for chosen polynomials and parameters. Test
set was used to find the best combination of model parameters
(degree of polynomial and regularization parameter). Final eval-
uation of the model was done with validation set.

Methods
The color calibration of digital camera can be defined as an

approximation problem

XW ≈ Y, (1)

where the transformation matrix W maps the camera response
values (matrix X ∈R

l×3) to CIELAB values (matrix Y ∈Rl×3) or
high-dimensional spectra (matrix Y ∈ R

l×n). Here l is the num-
ber of samples and n denotes the number of components in the
spectrum. Unknown coefficients of this model can be obtained
from least squares approximation using pseudoinverse approach
and known RGB-CIELAB or RGB-spectrum pairs for calcula-
tion. So the approximate solution for the problem (1) can be
calculated as

Ŵ = (XT X)−1XTY = X†Y. (2)

Method solves for the training set minW ‖XW −Y‖F , where
‖‖F denotes the Frobenius norm. This linear model can
be extended to higher order polynomials by adding terms
R2,G2,B2,RG,RB,GB, ... to matrix X [2], [4], [5]. In testing
phase, we used 1st , 2nd , 3rd and 4th degree polynomials with 3,
10, 20 and 35 terms, respectively. Models with 10, 20 and 35
terms include also a constant term 1.

It is possible that for the higher order polynomials, the solu-
tion starts oscillating and overfitting is obtained because the poly-
nomial adapts to the given training data too accurately but fails to
generalize well for test data. Effect of noise in the measured data
also provides false information for the estimated function. Regu-
larization is a method where we use some additional constraints
for limiting the capacity of the resulting function to overfit the
data. In Tikhonov regularization [3] we add multiple of identity
matrix to equation (2). The solution with regularization can be
written as

Ŵr = (XT X +λ I)−1XTY, (3)

where λ is the regularization parameter. Truncated singular value
decomposition [3] is another simple regularization method for
the capacity control. This means that we discard small singular



values of matrix X , when computation for matrix W is performed
(Rank(X) = k):
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We can use only first p singular values for the calculation of ma-
trix W in equation (2). In this case, pseudoinverse X† for matrix
X can be stated as X† = V1S†

1UT
1 . We tested these both meth-

ods, and concluded that the Tikhonov method performs slightly
better than the truncated SVD. Generally the difference between
these two methods was very small, so the final results have been
presented only for Tikhonov method.

We have used the following error measures for evaluating
the CIELAB and spectral estimation:

ΔE for CIELAB and spectral estimation

ΔE =
√

(L∗ − L̃∗)2 +(a∗ − ã∗)2 +(b∗ − b̃∗)2, (5)

where L∗, a∗, and b∗ are the original CIELAB values, and L̃∗,
ã∗, and b̃∗ are in CIELAB case the estimated CIELAB values
and in spectral case CIELAB values calculated from estimated
spectra.

Root Mean Squared Error (RMSE) for spectral estimation

RMSE =

√
∑n

i=1 (s(i)− s̃(i))2

n
, (6)

where n is number of wavelength components in spectra, s is the
original spectrum and s̃ is the reconstructed spectrum.

Experiments
For testing purposes, we had RGB data of GretagMacbeth

ColorChecker (24 samples) and Munsell Book of Color - Matte
Finish Collection (1269 samples) acquired with Fujifilm Finepix
S1 Pro and Canon A20 Powershot digital cameras under daylight
simulation light source. Spectra of both sets were sampled from
400 nm to 700 nm with 5 nm step. Munsell spectra are from
University of Joensuu Color Group Spectral Database [1].

At first, Munsell set was divided into 3 parts: training, test-
ing and validation set consisting of 635, 317 and 317 samples,
respectively. We used random sets of 200, 50, and 24 samples
from Munsell training set and Macbeth set as final training sets.
For each set size, we had two different sets picked randomly from
Munsell training set. Regularization parameter for Tikhonov reg-
ularization and degree of polynomial were chosen so that ΔE er-
rors for test set were minimized. Chosen model parameters were
validated using a separate validation set. Validation set results
are presented in Tables 1 and 2. Illustrations of estimation re-
sults for spectral estimation are shown in Figures 1 - 4 and for
CIELAB estimation in Figures 5 and 6.

We tested the performance of polynomial model in two
cases: when estimating 1) CIELAB values and 2) spectra from
RGB. We evaluated the color difference between original and es-
timated data using CIELAB ΔE error measure, and error in spec-
tral estimation using RMSE measure. We tested how the number
of polynomial terms affects the estimation performance, and if
the regularization by Tikhonov regularization would improve the
results. Abbreviations used in Tables 1 and 2: Avg. = average
error, Std. = standard deviation of error, Max. = maximum error.
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Figure 1. Good spectral estimation - training set: Munsell 200/II, camera:

Fuji. Solid line: original spectra, dashed line: estimated spectra.
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Figure 2. Bad spectral estimation - training set: Macbeth, camera: Fuji.

Solid line: original spectra, dashed line: estimated spectra.
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Figure 3. Good spectral estimation - training set: Munsell 200/II, camera:

Canon. Solid line: original spectra, dashed line: estimated spectra.
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Figure 4. Bad spectral estimation - training set: Macbeth, camera: Canon.

Solid line: original spectra, dashed line: estimated spectra.



Table 1: Error values for Fujifilm camera

Training set
ΔE in CIELAB estimation ΔE in spectral estimation RMSE in spectral estimation

Avg. Std. Max. terms Avg. Std. Max. terms Avg. Std. Max. terms

Munsell 200 / I 1.95 1.06 7.84 20 2.56 1.92 11.07 20 0.021 0.013 0.091 20
Munsell 200 / II 1.98 1.06 6.90 20 2.11 1.23 7.72 35 0.020 0.015 0.093 35

Munsell 50 / I 2.20 1.26 11.60 10 3.37 2.47 13.18 10 0.026 0.017 0.140 10
Munsell 50 / II 2.31 1.36 10.40 10 4.10 3.71 20.21 10 0.028 0.017 0.113 10

Munsell 24 / I 2.73 1.48 9.99 10 4.29 3.70 19.60 10 0.033 0.021 0.122 10
Munsell 24 / II 2.66 1.60 11.63 10 3.50 3.00 18.24 10 0.031 0.021 0.136 10

Macbeth 4.99 2.80 16.85 10 6.49 3.26 17.80 20 0.060 0.043 0.216 20

Table 2: Error values for Canon A20 camera

Training set
ΔE in CIELAB estimation ΔE in spectral estimation RMSE in spectral estimation

Avg. Std. Max. terms Avg. Std. Max. terms Avg. Std. Max. terms

Munsell 200 / I 3.66 2.40 13.65 20 3.07 2.11 12.45 20 0.022 0.015 0.109 20
Munsell 200 / II 3.16 1.94 12.18 35 2.87 1.83 11.87 35 0.022 0.015 0.080 35

Munsell 50 / I 5.24 3.89 23.32 10 4.74 3.15 22.16 10 0.032 0.023 0.128 10
Munsell 50 / II 4.52 2.78 15.77 20 4.74 3.57 19.91 10 0.030 0.020 0.138 10

Munsell 24 / I 6.92 4.56 23.64 10 5.33 4.49 27.81 10 0.035 0.024 0.120 10
Munsell 24 / II 6.65 4.44 25.36 10 5.24 3.56 18.49 10 0.035 0.025 0.145 10

Macbeth 6.43 3.50 19.59 10 6.20 3.48 20.02 10 0.042 0.020 0.113 10
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Figure 5. Good CIELAB estimation - training set: Munsell 200/I, camera: Fuji. Circles: original values, stars: estimated values.
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Figure 6. Bad CIELAB estimation - training set: Munsell 24/I, camera: Canon. Circles: original values, stars: estimated values.

Discussion
The performance of color calibration via spectral estima-

tion depends on camera. For Canon A20 camera, the spectral
estimation gives better performance than the direct CIELAB es-
timation. The behavior is opposite for Fujifilm camera, which
clearly shows stronger performance in direct CIELAB estimation
in terms of maximal color difference. There are large differences
between the two cameras. In overall, the color calibration results
for low-cost Canon are worse than for the Fujifilm camera.

Regularization is important when we use higher order poly-
nomials and small training sets for the transformation. On the
other hand, large regularization terms have to be used usually in
cases when the degree of the polynomial is already too high for
the training set. If the degree of polynomial was properly chosen,
the effect of regularization was small or it wasn’t needed at all.

Size of the training set is obviously a very important fac-
tor in the training process, which can be seen clearly from the
results. Maximum errors for both the CIELAB and RMSE mea-
sures have the lowest values when the largest training sets are
used. The best performing polynomial usually was the 2nd de-
gree polynomial, even for the training set of 50 samples. The
largest training set benefitted from the use of 3rd and 4th degree
polynomials. From the smallest sets only Macbeth chart gave
reasonable results when the 3rd degree was used. Despite of this,
the obtained results for Macbeth training set were usually worse
than for the other sets containing 24 samples.

It can be seen that there are also quite large deviations be-
tween results for the training sets with same size. This deviation
is smallest between the largest training sets. This suggests that
training set should be chosen carefully if small sets are used in
training.
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