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Abstract 
In this paper we present a method to define signatures for 

colour object based on the Zernike moments. The aim of these 
signatures is to characterize simultaneously the object shape 
and texture. We propose two kinds of signatures that are 
invariant to image scale, rotation and translation.  

The first one is based on a marginal approach that 
processes each RGB component separately. The Zernike 
moments are computed considering the greyscale value of the 
pixels and the used method provides two maps of moments for 
each component, one with real values and one with imaginary 
values. An adapted comparison procedure is used to compare 
the moment maps of two distinct objects.  

The second signature is based on a vectorial approach 
where each pixel is characterized by a 3D vector defined in the 
RGB cube. The Zernike moments are now computed 
considering the colour variation between two adjacent pixels. 
This second approach is faster and provides only 2 moment 
maps that represent the colour variations of the object.  

These signatures have been used to track exotic fishes in 
an aquarium in the framework of the Aqu@theque program. 

Introduction 
The tracking of an object in a sequence of images needs a 

recognition phase. In order to associate a signature to a given 
object, we have focused our attention on works dealing with 
classification and indexing. This signature can be a scalar 
number, a vector or a matrix depending on the method used. 
Our principal objective is to identify a given object from its 
signature to track it through a sequence of images.  

Many methods are based on histogram comparison [1], 
[2], [3]. They consist in estimating, for instance, the number of 
colours used in the image and their distribution. A lot of 
comparison criteria have been defined to compare images or 
regions of interest (ROI) [4]. These methods are usually fast; 
however they are not enough discriminating, because they 
don’t permit to make the distinction between two different 
objects that exhibit similar colorimetric properties.  

Another group of methods works on object shapes. They 
were generally used in the case of binary images, but their uses 
have been extended to greyscale images. Some of these 
methods use moments (geometric, Hu, Legendre …) [5], [6]. 
But, they have to be adapted in order to obtain a signature that 
is invariant to image scale, rotation and translation. Few 
methods, such as the Zernike moments [7] [8], the Radon 
transform [9] [10] or the Fourier-Mellin transform [5], exhibit 
naturally these invariance properties. 

The purpose of our study is to work simultaneously on 
object shape and texture. The Zernike moments [11], [12], [13], 
[14] seem to be the appropriate method for several reasons. 

1 – The used computation method is invariant to image 
scale and rotation.  

2 – The computation of the moment at a particular point 
provides the translation invariance property. 

3 – The projection of the pixel intensity on a set of 
orthogonal polynomials allows estimating the texture variation 
in a given direction.  

However, this method is usually used with binary and 
greyscale images. So, a new approach based on Zernike 
moments, has been developed to define signatures for colour 
object. In this paper, we present a marginal approach and a 
vectorial one to compute signatures. These two methods have 
been applied to the tracking of fishes in an aquarium in the 
framework of the Aqu@theque Program.  

Complex Zernike moments 
Complex Zernike moments are constructed using a set of 

complex polynomials which form a complete orthogonal basis 
set defined on the unit disc |r| ≤ 1. The Zernike moments of 
order p with repetition q are given by the following expression:  
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where:  
- p = 0, 1, 2… ∞ defines the order. 
- q is an integer subject to these two constraints: 0 ≤ |q| ≤ p

 and p - |q| is an even number  
- f(r,θ) is the image function being described (the object). 
- Vpq(r,θ) is the complex-valued Zernike polynomial. It is 

expressed in polar coordinates as: 
θθ qj
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unit disc. 
Rpq(r) is the orthogonal radial polynomial, defined as: 
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As an example, the first six radial polynomials are: 

   R00 (r) = 1   R11 (r) = r 
   R20 (r) = 2r² - 1  R22 (r) = r² 
   R31 (r) = 3r3 - 2r  R33 (r) = r3 

 

Figure 1: First radial polynomials 
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Figure 1 shows the response of the first radial polynomials. We 
can notice they are all different, and thus, allow a 
characterisation of the function image with "different points of 
view". 
For a discrete image, the equation (1) becomes: 
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where f(rkl,θkl) represents the grey level value of a pixel whose 
the co-ordinates are expressed in polar co-ordinates system. 

To compute the Zernike moments of an image f(r,θ), the 
image (ROI) is first mapped to the inscribe unit disc using polar 
co-ordinates, where the centre of the image (or ROI) is the 
origin of the unit disc (cf. figure 2). Those pixels falling outside 
the unit disc are not used in the calculation.  

 

Image of N X N pixels 
1 puts = 1 pixel 

 

Unit disc inscribes in the image
whose centre is the centre of the
image 

Figure 2: Discrete calculation of the Zernike moments 

This method provides naturally invariance to translation 
and scale change. Now, if the image is rotated through angle ϕ, 
the relationship between Z’pq and Zpq is  

ϕiq
pqpq eZZ −= .'  (3) 

Then | Zpq |, the magnitude of the Zernike moment is a rotation 
invariant feature of the underlying image (or ROI). 

Signature definition from the Zernike 
moments 

For an order p with repetition q, the computation result of 
Zernike moments is a complex value from which it is possible 
to calculate a scalar value (magnitude). It appears clearly that a 
signature based on only one value is not sufficient.  

For example, the figure 3 shows 2 test images representing 
a circle with the same coloured slices. Each slice has the same 
number of pixels, so the distribution of a given colour is the 
same in the 2 images. The only difference between image 1 and 
image 2 is the location of the red (1), green (2), blue (3), cyan 
(4), magenta (5) and white (6) slices. 

 

  

 Image 1 Image 2 
Figure 3: Two test images 

 Z00 Z11 Z22 Z20 Z33 
Red component 
Image 1 293,16 262,14 187,15 454,90 119,52 
Image 2 293,16 262,14 187,15 454,90 119,52 
Green component 
Image 1 293,16 262,14 187,15 454,90 119,52 
Image 2 293,16 262,14 187,15 454,90 119,52 
Blue component 
Image 1 293,16 262,14 187,15 454,90 119,52 
Image 2 293,16 262,14 187,15 454,90 119,52 

Table 1: The computation result of “classical” Zernike moments 

Table 1 shows the magnitude of the first Zernike moments 
for each component. The computed values are equal; the 
images will be detected as being the same one. 

In order to enhance the discriminating capacity, we have 
defined a “moment map” which is obtained from the 
decomposition of the computation of the Zernike moments.  

For an order p with repetition q, a value for the angle θ is 
imposed. Then, it is possible to calculate the following 
expression: 
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This term represents the sum of pixel intensities weighted 
by the Zernike polynomials calculated on the radius length of 
the unit disc. The result is then stored in a two dimensions map 
(cf. figure 4). The abscissa represents the angle θ, ranging from 
0 to 2π. The ordinate represents the Zernike moments: Z00, 
Z11… Zpq… Zmn, where m and n are respectively the maximum 
order and repetition chosen to define the signature. The line 
number of the obtained signature depends on the number of 
moments used to characterize the object.  

This computation method provides two maps: one for real 
values and another one for imaginary values for all computed 
moments (cf. figure 4). These maps define the signature of the 
studied object. 
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Figure 4: “moment maps” 

Signature based on marginal approach  
In order to generalise this method to colour images, firstly, 

we have used a marginal strategy. Two “moment maps” are 
defined, as described above, for each colour component: red, 
green and blue. So, 6 “moment maps” have to be computed to 
characterize an object.  
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To allow visual comparison of the signatures, a colour 
“map” is obtained by mixing the three “real maps” 
(corresponding to red, green and blue component) to create a 
coloured image (composed of a red, green and blue channel). 
The same method is used for “imaginary maps”. Finally, we 
obtained two coloured representations of the signature of our 
studied object. But the interpretation is easier with the 
magnitude map, computed from the real and imaginary maps. 

For the images of figure 3, the following “moment maps” 
(cf. figures 5, 6) are obtained with the marginal approach. 

 

 “real map” “imaginary map” 

 

 “magnitude map” 
Figure 5: The signature of Image 1 

 

 “real map” “imaginary map” 

 

 “magnitude map” 
Figure 6: The signature of Image 2 

A visual comparison of the magnitude maps allows 
immediately concluding that the two objects are different. In 
this example, each coloured part of the signature corresponds to 
a coloured slice of the circle. The part A (figure 5) corresponds 
to the slice 5 (figure 3: image 1), and the part G (figure 6) 
corresponds to the slice 4 (figure 3: image 2). The “colour” of 
each element of the signature depends on the mixing of the 
value of Zernike moments computed for the red, green and blue 
components. For the green slice (2), the red and blue 
components are equal to zero and their Zernike moments are 
also equal to zero. It is different for the green component, this 
is why the part D (figure 5) appears green. The differences 
between the parts A and G, but also between B (resp. C, D, E, 
F) and H (resp. I, J, K, L) allow distinguishing the objects. 

Figure 7 shows another example. The object (image 1) has 
been rotated (180 degrees), and scaled (double size) to obtain 
the object of image 2. Figure 8 shows the signature of image 1 
and the 9 the one of image 2. The yellow colour is marked by 
the item (1) and the red colour with the item (2). The 
comparison between the maps of the figure 8 and 9 
demonstrates that a rotation of the object involves a shifting of 
the “magnitude map”. 

To compare objectively the two signatures, we need to 
define a comparison procedure that takes into account the 
shifting effect of the signature when a rotation is applied to an 
object. 

 

 

 Image 1 Image 2 
Figure 7: Two test images. Image 2 has undergone a rotation of 180° and 
a scaling (double). 

 

 “magnitude map” 
Figure 8: The signature of Image 1 

 

 “magnitude map” 
Figure 9: The signature of Image 2 

The comparison between the “moment maps” of two 
images (or ROI) is based on the χ2 test. But, to take into 
account the shifting effect. The first signature is fixed and is 
compared to each circular permutation of the second one. The 
minimum value is kept as the similarity index between the two 
signatures.  

The figure 10 shows an example of an image and the two 
maps obtained for the fish marked by a white disc.  

“real maps” 

“imaginary maps” 

  

“magnitude map” 
Figure 10: Visual signature of the fish marked by a white disc obtained 
with the marginal approach  

This method has been used to track fishes in an aquarium 
and provides good results. But two problems have been 
observed. Firstly, it’s time consuming since a significant 
number of maps have to be computed (one for each colour 
component). Secondly, the three components aren’t correlated 
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any more, since they are processed separately. So a second 
approach has been defined. 

Signature based on vectorial approach  
In this approach, each pixel is characterized by a vector 

whose the components are defined from its colour components 
(red, green, blue) defined in the RGB cube. The principle used 
to compute the signature is the same as above except that we 
don’t consider anymore the pixel intensity (greyscale value), 
represented by the term f(r,θ) in equation (4). This term is 
replaced by an expression that estimates the colour variation 
(Cv) between two adjacent pixels along the radius of the unit 
circle. This expression is given by the following equation:  
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where: 
- 

1pixelV

1pixelV  and 
2pixelV  represent the vectors which characterize 

the colour of two adjacent pixels along the radius of the unit 
circle.  
Note that the origin of these vectors is the centre O’ of cube 
RGB as shown on figure 11 and their extremity correspond to 
the colour of the two adjacent pixels. 
- ϕ is the angle formed by these two vectors.  
- The parameters α and β are used to weight each term of this 
expression with the constraint 1=+ βα . 

 
Figure 11: RGB Cube. 

When the second term (difference of the norms) tends 
towards zero, the first term of the expression (equation 5) is 
used to differentiate them thanks to the angle ϕ formed by 
these two vectors (cf. figure 12a). The maximum value of the 
first term is obtained for opposite vector (ϕ = 180) and the 
minimum value for vectors with the same direction (ϕ = 0). 

Conversely, when the angle ϕ tends towards zero, the 
second term of the expression (eq. 5) allows differentiating the 
two vectors (cf. figure 12b). The maximum value of the second 

term is obtained when 1pixelV  is a null vector (middle grey 

“colour”) and 2pixelV  is the longer vector (colour 

corresponding to extremities of the cube such as red, green, 

white …). The minimum value is equal to zero when the 
magnitudes of the vectors are equals. 

If two adjacent pixels exhibit a similar colour, the term Cv 
tends toward zero. On the other hand, more the colour is 
different more the term Cv tends toward one. 

Vpixel1
Vpixel2

ϕ
 

(a) ||Vpixel1|| = ||Vpixel2|| and ϕ ≠ 0 

Vpixel1

Vpixel2

 
(b) ||Vpixel1|| ≠ ||Vpixel2|| and ϕ ≈ 0 

Figure 12: Comparison of the vectors 

With this approach, the signature of an object is only 
characterized by two “moments maps” and is less time 
consuming than the previous approach since the three 
components (red, green and blue) are processed 
simultaneously. The “moment maps” give a description of the 
colour variations of an object (ROI). Since the signature has the 
same properties as above, the same comparison procedure is 
used. 

Figure 13 shows an example of an image and the two 
maps obtained for the fish marked by a white disc. To allow 
visual comparison and interpretation, the maps are presented 
like grey level images. 

 “real maps” 

“imaginary maps” 

  

“magnitude map” 
Figure 13: Signature of the selected fish with the vectorial approach. 

Application  
This work is carried out in the framework of the 

Aqu@theque project [15] in collaboration with the "Aquarium 
of La Rochelle". These two approaches have been applied to 
track exotic fishes in an aquarium.  

To test the validity of the signature based on Zernike 
moments, we have used the following process. First, we select 
a fish in the first image of the sequence and its signature is 
computed (cf. figure 14a). Then, the signature of all the fishes 
detected in the following image is defined. All the signatures 
are compared to the one of the selected fish. The chosen fish is 
the one whose the signature is the most similar to the signature 
of the selected fish (cf. figure 14b).  

In the first sequence (cf. figure 14), the attention have 
been focused on the fish marked by a white disc. During the 
sequence, the direction of the fish change and can be 



 

considered as a rotation. However, the algorithm shows its 
robustness to rotation since it successes to track the fish. 

 

(a) First image: t = t0  (b) Image at t = t1 > t0 
Figure 14: Tracking of a fish which has undergone a rotation. 

The second sequence (cf. figure 15) shows the tracking of 
a fish whose the direction and the size change (modification of 
the distance between the camera and the fish). The results 
prove that the signature is also invariant to image scale 
changes. 

 

 (a) First image: t=t0 (b) Image at t=t1 > t0 

 

 (c) Image at t=t2 > t1 
Figure 15: Tracking of a fish which has undergone many rotations and 
scale changes. 

The aim of this last experiment (cf. figure 16) is to track a 
“blue tang” fish. During the sequence, some illumination 
variations modify the appearance of the fish. In spite of the 
luminosity change, the signature is robust enough to track the 
fish (cf. figure 17).  

 

(a) First image: t = t0  (b) Image at t = t1 > t0 
Figure 16: Tracking of the “blue tang” fish. 

Conclusion  
In this paper, we have presented a method based on 

Zernike moments to define signatures for colour objects. The 
invariance properties to translation, rotation and scale change 
ensure to be able to track selected objects if their moves can be 
decomposed in simple geometrical transformations. 

The vectorial approach allows characterising the colour 
texture of an object since the moments give a description of 
colour variations.  

In order to validate the signature, some experiments have 
been done to track fishes in an aquarium. The first tests are 
encouraging but a certain sensitivity of the signatures has been 
detected when the centre of the unit disc is slightly moved. 
When it appears the tracking can fail. So, we are working now 
to reduce this sensibility by fixing more precisely the centre of 
the unit disc.  

In the case of our application, we have also to take care of 
the deformable aspect of the objects and the different views 
with which the fishes can be seen (front view, side view …). 
Since its aspect evolves during the sequence, we are also 
working on a dynamic version of the signature which adapts 
itself to the tracked object.  
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Figure 17: Tracking of the “blue tang” fish during a sequence 




