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Abstract 
Our aim was to characterise the higher-order chromatic 

mechanisms that yield the four unique hues: red, green, yellow 
and blue. Our results are consistent with the hypothesis that all 
four unique hues are generated by mechanisms that are linear 
in XYZ space. Furthermore, the variability between observers is 
relatively small when expressed in terms of perceptual errors 
and, as a consequence, the same linear model (same weights) 
fits the data for all observers. Given the linearity of these 
higher-order colour appearance mechanisms and the 
consistency across observers, these appearance judgments may 
be suitable to derive a standard observer model for colour 
appearance. Our results add further weight to the idea that the 
colour vision system in adult humans is able to recalibrate itself 
based on prior visual experience. 
 

Introduction 
When human observers are asked to adjust a coloured light 

such that it appears neither red nor green, or such that is 
appears neither yellow nor blue, most colour-normal observers 
have no difficulty in making these adjustments [1] and these 
colour appearance judgments are not influenced by culture and 
language [2], or by age [3, 4]. Furthermore, the variability in 
these colour appearance judgments is not related to the 
variability in chromatic discrimination sensitivity [5]. All these 
findings suggest that there is something very fundamental about 
these four attributes:  redness, greenness, yellowness and 
blueness. The aim of this study is twofold: (1) to establish 
whether these colour appearance mechanisms (yielding these 
four colour attributes) are linear mechanisms in XYZ space and 
(2) to evaluate the variability across observers. To evaluate the 
goodness of fit of a linear model holds we use a perceptual 
error metric (CIE 1994).  

 

Methods 

Task  
We obtained unique hue settings from 18 colour-normal 

observers (confirmed with the Colour Vision Test from 
Cambridge Research Systems) for a wide range of luminance 
and saturation levels, using a hue-selection task. For instance, 
to obtain the settings for unique red, the observer had to judge 
which patch contained neither yellow nor blue. In each trial an 
annulus of 12 coloured disks covering different shades of red 
was presented (see Figure 1). The observer made a selection by 
clicking with the mouse on the coloured patch, which contained 
neither yellow nor blue. Unique green settings were obtained 
similarly: an annulus of greenish patches was presented and the 
observer had to select that patch that contained ‘neither yellow 
nor blue’. Unique yellow (blue) settings were obtained by 
presenting an annulus of yellowish (bluish) patches and asking 

the observer to select that patch contains ‘neither red nor 
green’. Each individual disk had a diameter of 1.5 degrees of 
visual angle; the radius of the annulus was 5 degrees and was 
centered at the midpoint of the screen; on each trial the colour 
was assigned randomly to a particular patch on the annulus. All 
observers found the task easy and did not need require any 
further instructions or any explanations what ‘neither red not 
green’ (or ‘neither yellow nor blue’) meant. 

Figure 1. On each trial an annulus of coloured patches was presented on 
a grey background. To obtain the settings for unique red, for instance, 
the patches were all reddish and the observer had to judge which patch 
contained ‘neither yellow nor blue’. The observer selected the most 
appropriate colour patch by clicking with the mouse on the patch. There 
was no time limit and the observer was encouraged to move his/her eyes 
freely. 

Colour Space 
For stimulus selection we used the HSV (Hue-Saturation-

Value) colour space, since we attempted to keep the saturation 
and the luminance level approximately the same for all the 
colour patches presented on a particular trial; this facilitates the 
task of the observer to select the most appropriate hue. The 
HSV space is scaled such that it makes use of the entire 
monitor gamut. ‘Value’ (which is loosely related to luminance) 
can range from 0 to 1; 0 is black and 1 is white (for an 
achromatic colour). Saturation can range from 0 to 1 and refers 
to the amount of grey in a particular colour; a saturation of 0 
indicates a grey colour; a saturation of 1 refers to a fully 
saturated colour. Hue is specified as an angle ranging from 0 to 
360 deg. In each session all four unique hues were determined 
at different saturation and luminance levels. Based on 
preliminary experiments, we used saturation levels ranging 
from 0.2 to 1.0, in steps of 0.05, and value levels ranging from 
0.3 to 1.0, again in steps of 0.05.  These value levels resulted in 
luminances ranging from 2 cd/m^2 to 130 cd/m^2, with an 
average luminance of about 42 cd/m^2. At a particular trial, a 
specific combination of saturation and level was used; the order 
of presentation was randomised. 



 

 

 
For the data analysis, the colour coordinates were 

converted from HSV to XYZ space [6]. The parameters for the 
linear model (cf Eq. 1-4). were estimated in XYZ space. To 
evaluate the goodness of fit and the variability between 
observers, perceptual errors were computed in L*a*b* space, 
which is an approximately uniform colour space.  

 

Apparatus  
All stimuli were presented on a CRT screen of a DELL 

monitor (DELL P790). Linearised look-up tables were 
produced by measuring the CRT light outputs with a 
spectroradiometer (SpectraScan PR650; PhotoResearch). The 
background was always grey with a mean luminance of 43 
cd/m^2 and with chromaticity co-ordinates x=0.282 and y= 
0.307. The observers were seated in a darkened room 1 m away 
from the monitor and adapted to the grey background for at 
least 5 minutes. The stimuli were presented continuously until 
the observer responded. There was no time limit for the 
response and the observers were encouraged to move their eyes 
freely. Each observer made at least 80 selections for each 
unique hue. Altogether, for each unique hue we obtained 1616 
data points. 

 

The Linear Model 
The assumption underlying hue cancellation judgments [7] 

is that each unique hue is generated by silencing a 
chromatically opponent mechanism. That is, all colours that are 
judged as ‘unique red’ appear ‘neither yellow nor blue’, hence 
silencing a yellow-blue (YB) mechanism. If unique red (R) is 
generated by silencing an YB mechanism and if this 
mechanism is linear in XYZ space, then we can write:  

 α  R ∗ ∆ X  +  β  R∗ ∆ Y   +  γ R ∗ ∆  Z  =  YBR = 0  (1) 
 
All colour patches were presented on a grey background 

the observers were adapted to. Since colour appearance 
depends mainly on the incremental signal with respect to this 
background, the linear model is formulated in terms of 
incremental (or decremental) XYZ co-ordinates, denoted with 
∆ X, ∆ Y, ∆ Z. Equation 1 defines a plane (through the origin) 
in XYZ space. The normal vector (α R , β R , γ R ) characterises 
the yellow-blue mechanism (YBR) that is silenced by all the 
(unique red) colours on this plane. We can derive an analogous 
equation for unique green: 

 α G ∗ ∆ X  +  β  G  ∗ ∆ Y   +   γ  G  ∗ ∆ Z  = YBG  =  0  (2) 
 
For unique yellow we assume that a particular red-green 

mechanism (RGY) is silenced since unique yellow is obtained 
by selecting a yellowish light that appears ‘neither red nor 
green’. The null plane for this opponent RG mechanism is 
therefore defined as: 

α Y ∗ ∆ X  +  β Y ∗ ∆ Y  +   γ Y ∗ ∆ Z  =  RGY  =  0  (3) 
 
The vector (α Y, β Y, γ Y) is orthogonal to this plane and 

characterises the red-green mechanism (RGY), which is 
silenced by all colours on this plane. An analogous null plane 
can be derived for unique blue; the corresponding normal 

vector characterises the red-green mechanism (RGB), which is 
silenced by all colours on this null plane: 

α  B ∗ ∆  X + β  B ∗ ∆  Y +  γ  B ∗ ∆  Z  =  RGB  =  0 (4) 
 
Now we ask the following questions: (1) Does a linear 

model defined by Eq. 1-4 fit the data? (2) Do the same weights 
predict the unique hue settings for all observers implying that 
observers have very similar colour appearance mechanism?. 

 
 

Results and Discussion 

Unique Hue Settings in the CIE xy diagram 
The unique hue settings were obtained for a range of 

luminance and saturation levels. These settings obtained in 
HSV space were then converted to XYZ space and each unique 
hue selection is a point in this three-dimensional XYZ space. 
To visualise the loci of the unique hues, we first present our 
data in the two-dimensional CIE diagram (Figure 1); all the 
analysis however is performed in XYZ space. In figure 1, red 
symbols (circles) refer to the settings for ‘unique red’ and green 
symbols (squares) to ‘unique green’; yellow symbols (upward 
pointing triangles) denote the data for ‘unique yellow’ and blue 
symbols (downward pointing triangles) indicate the loci of 
‘unique blue’. The dark outline indicates the monitor gamut.  

 
Figure 2 demonstrates an important and well-known 

property of the unique hues: whereas yellow and blue are 
collinear in the xy diagram and lie on a line through the grey 
origin (adapting background colour), the settings for red and 
green do not lie on a line through the origin [8, 9]. 

Figure 2. The unique hue settings are shown in the CIE xy diagram. The 
unqiue hue settings were obtained at a large range of luminance and 
levels (which cannot be seen in the xy diagram). The red circles denote 
the settings for red, the yellow  upward-pointing triangles for yellow, the 
green squares for green, and the blue down-ward pointing triangles for 
blue. The dark outline indicates the monitor gamut. 

Linearity of the unique-hue mechanisms 
The first aim of this study was to test whether the unique 

hue mechanisms are linear transformations of XYZ space. To 
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evaluate linearity we determined the best-fitting linear model 
and evaluated the deviations of the data from it.  

For each of the four data sets (RED, GREEN, YELLOW, 
BLUE) we estimate the coefficients α , β , γ  (as defined in Eq. 
1 – 4) by minimizing the Euclidean distances between the 
unique hue settings (in XYZ space) and the theoretical plane 
(‘Orthogonal Distance Regression’ [10]). The coefficients 
α , β , γ  define the vector which is orthogonal to the plane 
(normal vector): the dot product between the normal vector and 
any point on this plane is zero. This normal vector therefore 
corresponds to the chromatic mechanism which is silenced by 
all the settings for a particular hue. For instance, all the reddish 
colours that are considered as ‘neither yellow nor blue’ (that is, 
all unique red settings) lie on a particular surface in XYZ 
space. The linear model assumes that this surface is a plane.  
The normal vector for the ‘unique red plane’ hence defines the 
chromatic mechanism (in XYZ space) that gives zero response 
to all unique red settings (Eq. 1). The length of this normal 
vector is arbitrary and the coefficients are normalised such that 
α 2 +  β 2 +  γ 2  =  1. For each unique hue we fitted n=1616 data 
points. An equivalent method for finding the coefficients 
(α , β , γ )  is a principal component analysis (PCA). The last 
eigenvector (explaining the least variance) is the normal vector.  

Using orthogonal distance regression we obtained the 
following coefficients α , β , γ . For RED: 0.4662, -0.8483, 
0.2510, for GREEN: -0.8868, 0.3716, 0.2747, for YELLOW:  
0.8020, -0.5866, -0.1129, and for BLUE: 0.8166, -0.5676, -
0.1043. These coefficients define the chromatic mechanisms 
that are silenced by the respective unique hue settings. It is 
worth noting that the coefficients for RED and GREEN are 
very different, hence confirming the finding that RED and 
GREEN cannot be produced by the same linear chromatic 
mechanism (cf Figure 1: red and green are not collinear). The 
coefficients for YELLOW and BLUE on the other hand are 
very similar, which is consistent with the idea that the same 
linear mechanism underlies these unique hues (cf Figure 1: 
yellow and blue are collinear). 

After having derived the best-fitting linear model, we now 
want to test how well it fits the data; we assume that each 
unique hue may be generated by a different chromatic 
mechanism (see above) as defined in Eq. 1-4.  We evaluated 
the goodness of fit by calculating the perceptual error between 
the predicted and the observed unique hue settings for each of 
the four unique hues. The predicted unique-hue co-ordinates 
were obtained in the following way: for each (observed) 
unique-hue co-ordinate (in XYZ) we find the point on the 
theoretical plane which is closest (shortest Euclidean distance 
in XYZ space) to it. This is the predicted co-ordinate (in XYZ). 
We then converted the XYZ coordinates of both the observed 
settings and the predictions into the more uniform L*a*b* 
Space [11]. In figure 3, the observed (large circles) and 
predicted (small diamonds) settings are shown. The predictions 
were made by fitting the plane for each observer individually; 
for each unique hue we therefore estimated the coefficients 
(Eq. 1-4) for each observer separately. We then calculated the 
perceptual errors between the observed and the predicted 
unique hue co-ordinates using the colour difference formula 
proposed by the CIE in 1994, since this colour difference 
formula was developed to fit small colour differences [12, 13]. 
It might be worthwhile to point out that, in our calculations, 
this colour difference formula gave slightly lower values than 
the simple Euclidean distance in L*a*b* space. A perceptual 
error of 5 is visible in side-by-side image comparisons [14]. 

Figure 4 shows the distribution of these perceptual errors for all 
four unique hues. The black (left) bars indicate the relative 
frequency as a function of the error magnitude when the linear 
model was fitted for each observer separately (‘INDIVID’). At 
least 80% of the errors are below 2 and less than 2% are above 
5. The average error is less than 1.5 (see Table 1, row 2). This 
suggests that the linear model fits the data quite well.  

 

 
Figure 3. The unique hue settings are shown in the approximately 
uniform CIE L*a*b*  diagram. Data are indicated by large circles; 
predictions are shown as small black diamonds. To visual the goodness 
of fit the predictions are plotted on top of the observed unique hue 
settings. The predictions shown here were made for each observer 
individually. We also fitted the pooled data and compared them to the 
individually derived predictions (see text for details). 

Table 1: MEAN PERCEPTUAL ERRORS (CIE 1994) 
 RED GREEN YELLOW BLUE 
POOLED 2.5 1.8 2.1 1.5 
INDIVID 1.4 1.1 1.1 1.3 

 

Inter-observer Variability 
The second aim of this study was to evaluate the 

variability between (colour-normal) observers in the perception 
of these unique hues. To this end we fitted the linear model to 
the pooled data (over all 18 observers) and made predictions 
for all observers using the same set of coefficients (one set of 
coefficients for each unique hue; cf Eq. 1-4). If there is little or 
no variability between observers, then the individually derived 
predictions (based on different coefficients for each observer) 
and the predictions derived from the pooled data should be very 
similar. We again calculated the perceptual errors (CIE 1994; 
see last section), i.e. the deviations of the observed unique-hue 
settings and the predictions, in Lab Space. The distribution of 
the errors is indicated by the white (right) bars in figure 4 
(labeled ‘POOLED).  As expected, the fit of the linear model is 
worse for the pooled data compared to the individually fitted 
data. Predictions for the pooled data were arrived fitting only 
three free parameters ( α , β ,  γ ) for each hue; for the 
individual fits, 54 (3x18) parameters were fitted; for the 
‘pooled’ data, 1616 data points were predicted with only three 
free parameters. Still, about 60% of the errors are below 2 and 
less than 5% are above a CIE L*a*b*  error of 5. Similarly, the 



 

 

average error (Table 1, row 1) ranges from 1.5 to 2.5 and is 
higher (by a factor of about 1.5) than for the individually fitted 
data but still in an acceptable range [14] We therefore argue 
that the fit based on the pooled data is still acceptable and 
indicates a relatively small variability across observers with 
respect to these colour appearance mechanisms.  

 

 
Figure 4. Histograms showing the distribution of the perceptual errors. 
The total number of trials for each colour was 1616. The perceptual 
errors are calculated by taking the difference between the predicted 
unique hue settings (based on the linear model, Eq. 1-4) and  the 
observed unique hue settings (cf Figure 1) in L*a*b*  space. Each panel 
shows the errors for a particular colour (RED, GREEN, YELLOW, BLUE). 
Within each panel two error distributions are shown: The left (black) bars 
shows the error frequencies when the predictions are made for each 
observer individually (‘INDIVID’); the right (white) bars indicate the error 
frequencies when the data for all observers are fitted with a single set of 
parameters (‘POOLED’). The discrepancy between the two error 
distributions reflects the inter-observer variability. For the individual fits 
(black bars) 80% of the errors are below 2. As expected, the goodness of 
fit of the linear model is slightly worse for the pooled fits, since only one 
set of parameters is estimated for all 18 observers (cf. Eq. 1-4); about 
60% of the errors are below 2.  

Due to the relatively small inter-observer variability these 
unique-hue judgments might be useful to build standard models 
of colour appearance. It is likely that these unique-hue 
judgments are mediated by mechanisms that differ from 
mechanisms used for the discrimination of chromatic signals. 
This is corroborated by the finding that chromatic sensitivity 
and variability in unique-hue judgments is not correlated [5, 
15] and by a recent study showing that the relative number of L 
:M cones does not affect unique yellow settings. [16, 17].  It is 
conceivable that relative L:M cone numbers affect chromatic 
discrimination performance, but have little effect on the 
chromatic appearance. This might be a factor contributing to 
the relatively small inter-observer variability. 

Based on our perceptual error analysis, we suggest that the 
mechanisms that underlie these unique-hue judgments combine 
the XYZ co-ordinates linearly. This seems to be inconsistent 
with current successful colour appearance models [18-24] 
which usually include some non-linearity before the colour-
opponent stage.  We can think of two reasons for this 
discrepancy. The main reason is probably that we tested 
linearity in a rather restricted range determined by the gamut of 
our monitor. It is likely that non-linearities would have been 
revealed for higher intensities and more saturated colours. 

Secondly, the above argument that we might tap into different 
mechanisms depending on the judgment required of the 
observer, could also explain why we find no obvious deviations 
from linearity. The unique hues derived from a hue cancellation 
(or selection) task, might be generated by genuinely linear 
chromatic mechanisms.  

 

Conclusion 
We obtained unique hue settings from 18 observers using 

a visual display device. We conclude that, within the gamut of 
typical VDU, the higher-order colour mechanisms that yield the 
unique hues are linear mechanisms in XYZ space. Furthermore, 
the variability between observers is relatively small. These 
colour judgments may therefore useful to develop a standard 
model for colour appearance.  
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