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Abstract
Spectral calibration of digital cameras based on the spec-

tral data of commercially available calibration charts is an ill-
conditioned problem which has an infinite number of solutions.
To improve upon the estimate, different constraints are com-
monly employed. Traditionally such constraints include: non-
negativity, smoothness, uni-modality and that the estimated sen-
sors results in as good as possible response fit.

In this paper, we introduce a novel method to solve a gen-
eral ill-conditioned linear system with special focus on the solu-
tion of spectral calibration. We introduce a new approach based
on metamerism. We observe that the difference between two
metamers (spectra that integrate to the same sensor response)
is in the null-space of the sensor. These metamers are used to
robustly estimate the sensor’s null-space. Based on this null-
space, we derive projection operators to solve for the range of
the unknown sensor. Our new approach has a number of ad-
vantages over standard techniques: It involves no minimization
which means that the solution is robust to outliers and is not dom-
inated by larger response values. It also offers the ability to eval-
uate the goodness of the solution where it is possible to show that
the solution is optimal, given the data, if the calculated range is
one dimensional.

When comparing the new algorithm with the truncated sin-
gular value decomposition and Tikhonov regularization we found
that the new method performs slightly better for the training set
with noticeable improvements for the test data.

Introduction
Camera sensor calibration is the problem of estimating the

device’s spectral sensitivities from its responses to a number of
spectrally different surfaces. Generally, there are two approaches
to solving the spectral calibration problem: one based on phys-
ical measurements and one based on a theoretical model. The
physical approach, using a monochrometer gives an accurate es-
timate of the spectral sensitivities but it is expensive and time
consuming to use. The model-based approach is cheaper and
provides insight into the characteristics of the camera system. It
is based on solving a linear equation system of the form:

Yϒ = Y−ϒ = AX (1)

Let L be the number of sensor sensitivity functions of the camera,
M the number of surfaces used and N the dimension of the spec-
tral data. Typical values are; N = 31, corresponding to a 10nm
sampling of the wavelength range 400nm to 700nm and L = 3
for an RGB-camera. For the matrices involved we have: A is
the M×N matrix of measured color signals, X is a N×L dimen-
sional matrix whose elements are the spectral sensitivities, Y is of
size M×L and contains the measured camera responses and ϒ is
the acquisition noise matrix. The color signals are the point-wise
products of the illumination spectrum and the reflectance spec-
tra. The goodness of the solution for the spectral sensitivities

based on Equations (1) depends on two main factors: the noise
level in the response data (ϒ) and the statistical properties of the
spectral data available from the calibration chart (the matrix A).
Estimation of X from the rgb measurements Yϒ and A is a typ-
ical inverse problem and standard methods from linear algebra
are often used to solve it. From the general theory it is however
also known that the quality of the estimation can be substantially
improved by usage of additional constraints. The findings in [1]
indicate that the uncertainty surrounding spectral recovery is pro-
portional to the size of the recovered set and governed by factors
such as: the noise level, the dimensionality of the spectral data,
and the constraints imposed on the solution space. In [2] the au-
thors constrained the sensors to be positive, smooth, and to pre-
dict the responses within an acceptable noise bound. In [3] the
authors added a constraint on the number of peaks allowed in the
recovered sensor, while the authors in [4, 5, 6] constrained the
sensor’s magnitude to be small. All these methods [4, 5, 6, 3, 2]
require that the recovered sensor should minimize the difference
between the measured and estimated responses.

In this paper we introduce a new approach based on the
observation that the space of color signals is convex and com-
pact. The novel contribution of this paper is to use metamerism
to construct new color signals that are metameric blacks. These
metameric black color signals are then used to construct projec-
tion operators that characterize, fully or partially, the null-space
of the camera. This knowledge about the properties of the null-
space of the camera is then used to reduce the noise sensitivity
of the estimator. Different from standard methods, the proposed
algorithm is based on estimating the space of the sensor with-
out resorting to minimisation. Said differently, our method does
not require that the estimated sensor results in the best data fit
between the measured and estimated response values. This prop-
erty results in a method which is robust to outliers; and is not
driven by large response values.

In the experimental part we test the proposed method by cal-
ibrating two digital cameras: namely the Nikon D70 and MegaV-
ision. We compare the result obtained by the proposed meth-
ods with standard estimation methods like the truncated singular
value decomposition and Tikhonov Regularization.

Projection operators for calibration
We consider first the role of the calibration chips, ie. the

properties of the matrix A. The least squares estimate of the

solution of Equation ([?]) can be written as X =
(
ATA

)−1 AT Yϒ.
Often, (ATA)−1 does not exist. Thus, we can find an orthogonal
matrix U such that

AUT =
(

A1 0
)

(2)

and AX = (AUT)(UX) =
(

A1 0
)( X1

X2

)
= A1X1.

We can therefore find a projection operator Q defined as the
projection operator that maps X to X1 = QX where X1 is defined



as above. Replacing A by A1 we can work in the subspace of
the original space where we can assume that A has a pseudo-

inverse A† =
(
ATA

)−1
AT .

We now investigate the properties of the camera and start
with the following observation: Assume that we can split the
color signals from the calibration chart into two components with
one of them in the null space of the camera. This gives a decom-
position of A into A = A0 + A⊥. Corresponding to this split
we introduce projection operators P0,P⊥ such that A0 = AP0,
A⊥ = AP⊥ and A0X = AP0X = 0. We can see the knowledge of
the operator P0 as a type of extra knowledge and we see also that
the mapping A �→ AP⊥ = A⊥ reduces the rank of the matrix A.
We can use the same reduction procedure as before when we in-
vestigated the role of the calibration chips. We will then show
that the knowledge of such projection operators leads to reduced
noise levels in the estimated camera response curves.

Metamers and projection operators
We now apply the following procedure to construct projec-

tion operators to the null-space of the camera:

• Collect the color-signal measurement pairs (am,ym)
where am is the color-signal and ym is the camera output
belonging to the m-th surface: ym = amx. The calculation
is carried out on the individual channels.

• For the response value ym, 0 ≤ ym ≤ 1, in the set of cam-
era output vector, find two points y(ν),y(μ) such that ym =
γy(ν) +(1− γ)y(μ) where 0 < γ < 1.

• The three output vectors y(ν),y(μ),y define three color-
signals through the pairs

(
a(ν),y(ν)

)
,
(

a(μ),y(μ)
)

and (am,ym)

The color signal am and the ”numerical” color signal z =
γa(ν) + (1− γ)a(μ) are metameric resulting in the same
camera output. For a three dimensional case, this proce-
dure is discussed in details in [7].

• Depending on the number of surfaces available for the cali-
bration, a number of metameric surfaces z can be calculated
for the same response value ym by simply using different
points y(ν),y(μ).

• By definition we know that two metameric surfaces zi and
z j result in the same camera response ym, i.e. zix = z jx =
ym. Thus is follows zix− z jx = 0. In other words the dif-
ference between two metamers is in the null space of the
sensor x.

• Thus if we collect all the numerical metamers for a single
camera response ym in a matrix Z and subtract the mean
of the set from each surface then the result is a matrix Zn
where Znx = 0. The mean is subtracted from the data to
define the vectors in a plane. In theory, any metamer can be
used instead of the mean point but we choose the mean as
it is, statistically, the most representative vector.

From the construction of Zn we know that the dot product of any
vector in Zn with the sensor x is zero. Further, we know that the
the points in Zn define a hyperplane in the space of the colour
signal data in A. The planes associated with different response
values y have to be parallel to each other and intersect the sensor
x at a point y. A three dimensional example is shown in Figure 1.
Where we notice that for a number of responses we have calcu-
lated the associated black planes defined as Zn and that they are
all orthogonal to a single vector.
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Figure 1. A 3-d example of the metameric black planes which are shown

to be orthogonal to a single vector. The axes, a1,a2 and a3 are the three

dimensional axes of the input data.

Estimating the sensor from the black
metamers

Thus far, we have shown that for each response value ym

from a colour filter, x it is possible to solve for a set of metameric
surfaces, Z and calculate their orthogonal elements on the sen-
sor, i.e. the black metamers Zn. The sensor is defined as the
component orthogonal to Zn. Further, theoretically it is suffi-
cient to calculate a single black plane to use in the sensor estima-
tion, however, our experiments show that calculating a number
of planes improves upon the robustness of the estimate.

Consider the case of a 31 dimensional vector space where
all the colour signals are defined. Further, let us assume that the
colour signals available from a calibration target span the whole
space. In this case the calculation of the metameric black out-
lined previously, amounts to calculating a 30 dimensional sub-
space where the sensor is the orthogonal complement. It is,
however, known that the dimensionality available from natural
surfaces including those compromising calibration targets is ad-
equately represented by 3− 11 basis vectors. Furthermore, the
dimensions of the metameric black planes can at most be in the
range of the actual dimensionality of the target (3-11). Thus to
estimate the sensor we first define the singular value decomposi-
tion of Zn as:

Zn = UZn DZn VT
Zn

(3)

Since UZn is orthonormal we define the projection onto the black
hyperplane as:

P0 = UZn UT
Zn

(4)

Here, we note that consideration must be given to the dimension-
ality of the original data; and thus only a limited number of basis
vectors can be included in the calculation of P0 (in the experi-
ments we used 7-9 basis vectors). Note that: while UT

Zn
UZn is

the identity, UZn UT
Zn

defines a projection onto the null space of
the sensor and is not equal to the identity matrix.

The definition of the projection matrix P0 in Equation (4)
allows us to determine the portion on the colour signals which
are in the direction of the sensor x. This is defined as:

A⊥ = A−AP0 (5)



In this paper, we define a sensor as the first principal vector of
A⊥. If the decomposition defined in Equation (5) is exact, which
is the case for noise free data, then the vector is A⊥ will be per-
fectly parallel to each other. Thus choosing the first principal
vector is only necessary when A⊥ has higher dimensions than
one. Figure 2 shows an example based on the red sensor of the
Nikon D70 calibrated in the experiments section. We notice that
the result improves, i.e. the vectors in the range become increas-
ingly parallel to each other by adding and increasing number of
black basis vectors 1b− 7b but then worsens, i.e. the vectors
diverge from the shape of a real sensor 8b−9b.

Measuring the goodness of the estimate
Thus far, we have divided the spectral space into two com-

ponents, A⊥ and A0. Theoretically, given that the original data
has dimension n we wish to divide the space such that A⊥ has
dimension 1 and A0 has dimension n− 1. If such a decompo-
sition is achieved then we have calibrated the sensor. However,
in the general case, when noise is present in the calibration data,
it is not possible to estimate the black planes perfectly. Thus
there will be no unique orthogonal, sensor, but rather a number
of possible vectors. One of the novel features of the proposed al-
gorithm is that it allows us to clearly estimate the goodness of the
recovery in the spectral space. This is different to the goodness
estimation used for other methods where goodness is normally
defined in the least squares sense between the measured and es-
timated responses.

We have stated that the sensor is perfectly calibrated if the
dimensionality of the colour signals in matrix A⊥ is one. Thus
we propose a goodness measure which is based on the rank of
A⊥. Such a measure can be defined by considering the singular
value decomposition of A⊥:

A⊥ = UA⊥DA⊥VT
A⊥ (6)

It is known that in the case where the vectors in A⊥ are parallel;
the first element is the only non zero element on the diagonal of
DA⊥ . It is further understood that the dimensionality of A⊥ can
be estimated by studying the ratio:

g =
d1

A⊥
∑n

i=1 dA⊥
×100 (7)

where the vector dA⊥ is the diagonal of DA⊥ and contains the sin-
gular values of A⊥ and d1

A⊥ is the first diagonal element. Clearly,
the closer the goodness measure, g is to 100% the more accurate
the sensor estimate.

Experiments and Results
To test the performance of the proposed algorithm and com-

pare it with standard methods we spectrally calibrated a Nikon
D70 digital camera and a MegaVision camera. For the Nikon D70
the actual sensitivities were not available while for the MegaVi-
sion the sensor curves were measured using a monochrometer.

In the first experiment, two calibration charts were used:
the Esser chart with 282 colored patches and the 24 patches of
the Macbeth Color Checker. For both charts, the spectral data
was measured using a Minolta CS-1000 spectroradiometer un-
der the daylight simulator of the Macbeth Verda viewing booth.
The camera responses were captured in the Nikon raw image for-
mat; and the response data was checked for linearity and the dark
noise was subtracted.

For numerical data comparison we used the absolute error
between the estimated and measured responses. This is defined

as:

AE = |Ax̃−y| (8)

where x̃ is the estimated sensor. To allow meaningful comparison
in terms of the absolute error metric; the data in y and Ax̃, for all
channels, were normalized such that the maximum value was set
to 100. Thus a difference of one is equivalent to 1% error.

In the second experiment, MegaVision, the spectral data was
that of the Macbeth color checker measured under a daylight sim-
ulator. Further, because the actual sensitivities were available it
was possible to compare the estimate with the measured sensitiv-
ities in the spectral space.

Nikon D70
In the first part of this experiment we performed a spectral

calibration of the Nikon D70 based on the camera’s responses to
the spectral data of the Esser calibration chart. The validity of the
sensors estimate was checked by calculating the responses to the
spectral data of the Macbeth Color Checker. When calculating
the sensitivities using the proposed method, only a subsection of
the Esser data was used. This subset was chosen such that the
data points were the extremes of three dimensional rgb space.
For the Nikon data we got 38 out of the 282 data points. Further,
for comparison we calculated the sensitivities using the truncated
singular value decomposition TSVD and Tikhonov regulariza-
tion TR. For both the training data was the whole of the Esser
chart. We chose these two methods because they are known to
result in better data fit compared to the constrained optimisation
techniques [5].

The results of the comparison based on the Esser data are
tabulated in Table 1; and those based on the Macbeth Color
Checker, test set, are tabulated in Table 2. Further, the spectral
sensitivities obtained with the new method, the TSVD and TR
are plotted in Figures 3, 4 and 5 respectively. Here we point out
that the sensitivities obtained with the new method are sharper
than those of achieved with the TSVD and TR.

The value of the proposed goodness measure is also tab-
ulated in Table 1, where we find that the red channel achieves
the value of 81.4%, for the green channel we get 81.6% and
for the blue 79.8%. Our experiments with different sensor sets
concludes that adding an increasing number of basis vectors to
the black space gradually improves the results until a maximum
value is obtained. For the red sensor the effect of adding an in-
creasing number of basis vectors, to the black space, on the re-
covery and the goodness measure is demonstrated in Figure 2. As
we see beyond the maximum value obtained at 7b the goodness
measure drops. This property means that the proposed goodness
measure can be used to automate the choice of number of basis
vectors included in the calibration. Indeed for the purpose of this
paper we used to optimal values reported in Table 1. When cal-
culating the goodness measure, for data used in the experiment,
using an increasing number of black basis vectors we obtained
the values plotted in Figure 6. As we see those values increase
almost linearly until a maximum value is achieved.

From Table 1 we note that the new metamer based MB al-
gorithm performs slightly better than the truncated singular de-
composition. Here, we remind the reader that the metamer based
method is not aimed at minimizing the difference between the
measured and estimated responses. Thus the fact that the results
outperforms those achieved with minimization based approaches
such as the truncated singular value decomposition and Tikhonov
regularization is clearly significant. Finally, when the estimated
sensors from the three methods were used to predict the camera’s



method Abs-Error
TSVD red green blue
mean 1.34 1.00 0.96

median 0.94 0.62 0.75

max 8.40 8.08 6.61

TR red green blue
mean 1.82 1.26 1.53

median 1.35 0.83 1.07

max 8.92 5.75 6.13

MB red green blue
GM 0.816 0.834 0.798

mean 1.298 1.025 1.036

median 0.789 0.704 0.738

max 8.918 8.059 5.592
The absolute error between the measured and estimated re-
sponses for the red, green and blue channels of the Nikon
D70. The results are based on the truncated singular value
decomposition TSVD, Tikhonov Regularization TR and the
metamer based MB methods. The calibration data was that
of the Esser calibration chart.

method Abs-Error

TSVD red green blue
mean 2.64 2.58 2.74

median 1.66 2.34 2.04

max 9.21 8.34 8.84

TR red green blue
mean 2.07 2.49 2.80

median 1.54 1.45 1.77

max 8.09 8.61 10.49

MB red green blue
mean 1.736 2.00 1.173

median 0.871 1.589 0.776

max 9.192 6.216 7.106
The absolute error between the measured and estimated re-
sponses for the red, green and blue channels of the Nikon
D70. The results are based on the truncated singular value
decomposition TSVD, Tikhonov Regularization TR and the
metamer based MB methods. The calibration data was that
of the Macbeth Color Checker.

responses to the spectral data of the Macbeth Color Checker,
which was used as a test set, the metamer based method showed
clear advantage over both the truncated singular value decompo-
sition and Tikhonov regularization. These results are tabulated in
Table 2, where we find that similar to the results achieved for the
training set, Table 1, the error between the estimated and mea-
sured responses are within 1%.
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MegaVision
In this experiment, we estimated the spectral sensitivities

of the MegaVision camera using the Macbeth Color Checker.
Measurements of the camera’s spectral sensitivities using a
monochrometer were available to us. The estimated sensitivities
are plotted in Figure 7. To estimate the similarity between the
two sets we used the Vora value [8] which is a measure between
the norm of the sensor set in its original space to the norm of
its projection onto the space of the second sensor. A Vora value
of one indicates that the sensors are within a linear transform of
each other while a value of 0 means that the sensors are orthogo-
nal. For the estimates shown in Figure 7 we found that the Vora
value is 0.96, which indicates a very close fit. When the esti-
mated sensitivities were used to estimate the responses we found
that the results are comparable to those achieved with the mea-
sured filters. These results are tabulated in Table 3. In Table 3
we note that the goodness measure is higher for the red and blue
channel than that achieved for the Nikon D70 camera, however,
we would like to point out that the goodness measure is depen-
dent on the number of calibration surfaces used, where using one
surface is guaranteed to result in a goodness value of one while
including more surfaces would only result in a value of unity if
all the vectors in the range are perfectly parallel to each other.
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Figure 3. The estimated spectral sensitivities of the Nikon D70 as a func-

tion of wavelength 380− 750 nm. The estimation method used is the pro-

posed metameric blacks.
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Figure 4. The estimated spectral sensitivities of the Nikon D70 as a func-

tion of wavelength 380− 750 nm. The estimation method used is the trun-

cated singular value decomposition.

Conclusion
In this paper, we introduced a novel method to estimate the

color sensitivity curves of a camera. The methods is based on
the observations that for a given illumination the space of color
signals is convex and that the difference between two metameric
spectra lies in the black space of the sensor. In the first step
of the estimation we use selected triples of calibration colors to
construct numerical spectral distributions that are in the black
space of the sensor. After constructing a set of metameric blacks
the sensor sensitivity function is found in the second step as the
orthogonal complement of the black space. This construction is
based on the construction of subspaces of the color signal space
only.

We tested the basic properties of the new algorithm by spec-
trally calibrating a Nikon-D70 and a MegaVision camera. In the
case of the Nikon-D70 we evaluated the performance with the
help of the estimation errors between the measured and the esti-
mated RGB vectors. For the MegaVision camera measurements
of the sensitivity curves were available and we could therefore
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Figure 5. The estimated spectral sensitivities of the Nikon D70 as a func-

tion of wavelength 380− 750 nm. The estimation method used is Tikhonov

regularization.
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compare these measured curves with the curves obtained by the
new calibration method.

Our first implementation of the method showed that for the
training set the results were comparable to those obtained by
standard techniques (truncated SVD and Tikhonov regulariza-
tion). For colors patches that were not used in the calibration
the performance of the new method was clearly better than the
performance of the truncated SVD and Tikhonov regularization.

The experiments described in this paper are only a first test
of the properties of the new estimation method. Further improve-
ments can be obtained by a more detailed evaluation of the noise
characteristics.
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ision as a function of wavelength 400− 700 nm. The actual sensitivities are

shown as the solid lines.

method Abs-Error
Measured red green blue
mean 0.73 0.62 0.67

median 0.63 0.44 0.65

max 1.58 1.72 1.64

MB red green blue
GM 0.82 0.87 0.95

mean 0.50 0.50 0.42

median 0.47 0.37 0.37

max 1.01 1.89 1.22
The absolute error between the measured and estimated re-
sponses for the red, green and blue channels of the MegaV-
ision camera. The results are based on the metamer based
MB method and the actual sensitivities. The calibration data
was that of the Macbeth Color Checker.
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