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Abstract
The Local Binary Pattern (LBP) operator computes a local

texture measure that is invariant to monotonic transformations of
the image grey-scale. As a result of this property, calculating the
LBP value in each channel of a colour image results in a triplet
of values that are invariant to changes in illumination colour.
Previous research has shown that histograms of grey-scale LBP
values, and histograms of LBP values calculated in the R, G and
B channels independently, form useful feature vectors for image
retrieval. In this paper we generate 3D histograms of LBP val-
ues for colour images. Our experiments demonstrate that image
retrieval performance, on a database of objects viewed under
different illuminants, is greatly improved when using the 3D his-
togram compared to when the histogram is calculated for each
colour channel independently. Furthermore, we find that this
method can give better performance than using colour-histogram
based features.

Introduction
Indexing images in large databases, that can be searched

quickly, requires that the information in each image can be rep-
resented by a small number of features. It is therefore important
to discover image features that facilitate good discrimination be-
tween different images and at the same time group similar images
together.

Swain and Ballard [1] used the colour histogram of an im-
age as a feature. Colour histograms have the advantage that they
are robust to changes in the composition of scenes, and to par-
tial occlusion of objects by other objects. A further property of
colour histograms is that their elements, i.e. histogram bins, have
a meaningful order; that is, bins which are close to each other in
the histogram represent colours which look similar to one an-
other. A problem with colour histograms however, as outlined in
the original work of Swain and Ballard, is that they are not robust
to changes in the colour of scene illumination; two scenes with
identical composition but with differing illuminant colour would
have different histograms, and hence be classed as different im-
ages. One solution to this problem is to apply a colour-constancy
algorithm, or normalisation scheme, to the image prior to the cal-
culation of the histogram [2, 3, 4]. A second approach is to derive
properties from the image that are invariant to the colour of the
illumination without explicitly transforming the image (e.g. [5]).
In this work we follow the second approach and extract local
texture features from an image that are invariant to changes in
illumination colour.

Texture has also previously been employed as a feature for
image retrieval [6, 7]. Textural features are generally extracted
from a grey-scale image, which can be constructed from a colour
image using a weighted average of the three colour channels.
While this approach may be effective in some situations, it suf-
fers from the same problem as the colour histogram; if the colour
of the illumination in the scene changes, so does the grey-scale
image and consequently so do the textural features. More re-

Figure 1. An illustrative example of the LBP calculation

cently, texture analysis methods have been proposed that con-
sider colour and texture information together [8, 9, 10]. One such
method, the Local Binary Pattern (LBP) operator [11] has been
shown to be useful in several texture classification tasks and has
been implemented, although as a grey-scale texture measure, in
existing image retrieval systems [12].

The LBP operator characterises the local variation in grey-
scale around a pixel, and is invariant to any monotonic transfor-
mation of the grey-scale. It follows that the LBP value calcu-
lated at each pixel in each colour channel will be unchanged by
a positive scaling of the channel output. This is a very useful
property, since a change in illumination colour generally results
in an independent scaling of each colour channel [13], thus the
LBP value in each colour channel is approximately illumination
independent. Moreover, even when the scalar model of image
change does not hold, typically the rank order of intensities in
each channel is preserved. Surprisingly, this property is even
true of images taken with different cameras [14]. As long as the
rank ordering of pixel intensities is maintained, the LBP value
will also be unchanged. As a result of this, LBP-based features
should be robust to changes in both the colour of the illumination
and the camera used to capture the image.

In this work we calculate the LBP value in the R, G and B
colour channels, thereby creating a new colour texture image.
We then characterise the images by their 3D LBP histogram.
This is an extension of the work of Mäenpää and Pietikäinen [9],
who computed LBP histograms in three colour channels inde-
pendently. However, computing a 3D histogram retains more in-
formation about the underlying image; information which allows
us to improve the performance of the LBP operator in a colour
image retrieval task.

Background
When the colour or geometry of the light-source illuminat-

ing a scene is changed, there is a change in the image recorded by
a digital camera. A result of this is that the distribution of camera
responses elicited by different objects can no longer be used as
a cue to identify them [1]. One way to tackle this problem is to
transform the images in such a way as to discount the effect of
the illumination (i.e. apply a colour-constancy algorithm) and to
use colour distributions in these transformed images as features.



An alternative approach is to derive features directly from the
image that are invariant to a change in illumination. The success
of both these approaches is reliant upon the nature of the image
transformation induced by an illumination change; this topic has
therefore been well studied [13, 15].

If we represent the camera response at a single pixel as a
vector r = [R G B]T , where R, G, and B are the responses of
the red, green and blue channels respectively, then the change of
illumination can be written as a transformation of responses r to
responses under a second illuminant r′:

r′ = T (r). (1)

For most changes in illumination that will be encountered in the
natural world, it has been found that T (·) is well approximated
by a 3×3 linear transform A:

r′ = Ar. (2)

The structure of the matrix A has also been observed to be tightly
constrained; in many cases A can take the form of a positive di-
agonal matrix [13], i.e. with positive values along the leading
diagonal and zeros elsewhere. Even when A is not diagonal, a
fixed transformation can be applied to the camera responses such
that that a diagonal transformation does serve as a good model
[15]. More recently it has been found that if the the camera re-
sponses in each channel are ranked in order of their magnitude,
a change in illumination will not alter this ranking [14]. While
this is clearly true in the diagonal case (multiplying a set of num-
bers by a positive scalar cannot change their ordering), it is an
interesting empirical result that this holds for non-diagonal illu-
mination changes. Surprisingly, the rank-ordering of responses
in each channel is also preserved across images taken with dif-
ferent cameras. It is precisely this property that we aim to exploit
in this paper by computing an image feature that is invariant to
changes that preserve the rank ordering of pixel responses.

The feature that we employ is the Local Binary Pattern
(LBP operator), which was developed by researchers at Oulu
University [11, 9, 12]. The goal of the operator is to charac-
terise the pattern around each pixel in an image. To under-
stand the concept of LBP we start by considering a grey-scale
image whose intensity I at pixel location (x,y) can be written
I(x,y). For a given pixel p = I(x0,y0), the 8 neighbours of p
can be written as ni, i = 0 . . . ,7, where n0 = I(x0 + 1,y0),n1 =
I(x0 + 1,y0 + 1), . . . ,n7 = I(x0 +1,y0−1) (see Figure 1). To
compute an LBP value, the grey-level value of each neighbour
ni is compared to the value at the central pixel p to determine
whether it is greater than or less than p. This amounts to a func-
tion which maps each ni onto a value bi as follows:

bi =
{

1 if ni ≥ p
0 if ni < p.

(3)

The LBP value for pixel (x0,y0) is derived by choosing an arbi-
trary starting point, say b0 and concatenating the 8 binary values
bi into a an 8-bit number; this operation can be written as follows:

LBP(x0,y0) =
7

∑
i=0

bi2
i. (4)

For a given pixel the LBP value is, by definition, invariant to any
transformation of the image grey-scale that preserves the rank-
ordering of pixel intensitites (i.e. a monotonic transformation).
This property is a consequence of the binary operation outlined
in Equation 3.

Mäenpää and Pietikäinen [9] extended the use of LBP to
colour images. They investigated two different methods for do-
ing this. One method is to compute the LBP value in each of the
R, G, and B colour channels separately. Thus at each pixel one
obtains a triplet of LBP values. Given that the LBP value in each
channel is invariant to image transformations that preserve pixel
rank-ordering, and that most illumination changes preserve rank-
ordering [14], we expect this triplet of values to be invariant to
illumination changes. Their second approach is to compute LBP
with “cross-terms”. In this method the central pixel p and neigh-
bourhood pixels ni are taken from different colour channels. This
approach is interesting as it takes into account interactions be-
tween different channels. However, this approach is unlikely to
yield features that are invariant to illumination change. Indeed,
Mäenpää and Pietikäinen employ an image normalisation to dis-
count illumination effects prior to computing LBP values in this
way.

After the computation of the LBP value at each pixel, the
whole image can be characterised by the histogram of LBP val-
ues [11]. In previous work, LBP histograms have been derived
for both grey-scale [11] and colour images [9]. For colour images
the histogram has been computed for each colour channel sepa-
rately, giving three histograms which can then be grouped into a
single feature vector [9]. However, whether computing LBP his-
tograms for a grey-scale image, or for the individual channels of
a colour image, some information is invariably lost. Clearly the
grey-scale approach loses colour information, but it is also not
invariant to illumination change. The colour approach is both in-
variant to illumination change and preserves some colour infor-
mation. Unfortunately, by computing three separate histograms,
one for R, G and B, information about the interaction between
the channels is lost. In this work we aim to keep some of this
information by, instead of computing a histogram in each colour
channel, computing a single joint histogram for the whole im-
age. We will evaluate the efficacy of this approach by using it as
a feature for an image retrieval task.

Implementation
In the following experiments we test two approaches to

computing LBP histograms for colour images; computing the
histograms separately for each colour channel, and computing
a joint histogram. The first stage in the histogram calculation is
to generate an LBP image for a each colour channel. For a given
pixel (x,y) and colour channel k, k∈ {R,G,B} the LBP value can
be denoted LBPk(x,y) and can take a discrete integer value from
1 to Q, where Q is the total number of possible LBP values.

The number of possible LBP values Q is a variable that is
dependent upon several factors. In the treatment in Section the
image is sampled at 8 points around the central pixel p. This pro-
duces an 8-bit number at each pixel and hence Q = 256. How-
ever, we are not restricted to this neigbourhood. Ojala et al. [11]
use a circularly symmetric neighbourhood, sampling at points
that are equidistant from p and from one another. When a sample
point does not fall exactly on a pixel, its value can be calculated
using bilinear interpolation. Employing this method facilitates
the use of any number of sample points. Similarly the radius
of the sampling circle can be varied freely in order to capture
features at different spatial scales. Here we employ this circular
neighbourhood, and incorporate the radius size as a variable to
be optimised.

The LBP operator can be implemented in a number of dif-
ferent forms. In [11] Ojala et al. derive a form, LBPri, which is
invariant to rotations in the underlying pattern. The computation



of this rotation invariant form can be written as follows:

LBPri = min{ROR (LBP, i) |i = 0,1,2, . . . ,N−1}, (5)

where the ROR function shifts the N-bit binary value LBP, i bits
to the right with wrap-around. This step not only makes the op-
erator invariant to rotations in the image, it reduces the number
of possible patterns Q significantly.

A further reduction in the number of patterns can be
achieved by only considering patterns of a specific “unifor-
mity” [11]. Uniformity is defined as the number of transitions
that occur in the binary string b0b1 . . .bN−1, where a transition is
a change from a 1 to a 0 or vice versa. The uniformity calculation
can be written as follows:

uniformity = ‖b0−bN−1‖+
N−2

∑
i=0
‖bi−bi+1‖. (6)

It has been observed [11] that in many natural images, patterns
with uniformity ≤ 2 account for the majority of patterns in the
image. As a result, little information is lost by only considering
those patterns. These patterns are also important as they corre-
spond approximately to image features such as edges, line end-
ings and corners. Patterns with uniformity ≤ 2 each consist of a
chain of ones (or zeros if you prefer) with a variable length. The
length of the chain determines which histogram bin the pattern
corresponds to. Each chain can be of length zero up to length
N, where N is the number of sample points. Following [11] we
can collect patterns of a higher uniformity than two in a single
histogram bin, which gives N +2 different bins in each channel.
A good property of this approach is that the histogram bins have
a meaningful order; elements that are close to one another have
similar chain lengths and thus represent similar patterns.

The next step in the procedure is to build the histograms. If
we consider the colour channels independently, then we need to
create three “marginal” histograms, Hk:

Hk(u) = ∑
x

∑
y

f (x,y) (7)

where f (x,y) =
{

1 if LBPk(x,y)=u
0 otherwise

where Hk(u) denotes the u-th histogram bin. The final colour his-
togram HM is formed by concatenating these three histograms:

HM = [HR,HG,HB]. (8)

The joint histogram HJ is calculated as follows:

HJ(u,v,w) = ∑
x

∑
y

g(x,y) (9)

g(x,y) =

⎧⎪⎪⎨
⎪⎪⎩

1 if LBPR(x,y)=u
and LBPG(x,y)=v
and LBPB(x,y)=w

0 otherwise

As a result of the refinement of the LBP calculation outlined
above, the number of possible LBP patterns is reduced from 256
to 10 for each pixel in each colour channel. Thus when the LBP
histogram is computed independently for each channel, there are
a total of 30 bins over all three colour channels. A joint his-
togram requires 10× 10× 10 = 1000 bins. In preliminary ex-
permiments we found that the bins which correspond to patterns

of “uniformity = 0” and “uniformity > 2” were not helpful in
discriminating between the different objects, thus we discarded
them. This leaves 7 unique LBP values, which in turn gives 21
bins for the independent histograms and 343 bins for the joint
histograms.

Experimental
We test the efficacy of the different features using an image

retrieval task. We use a database of images created by researchers
at Simon Fraser University 1, which contains 20 objects, each
under 11 different conditions. In each condition both the object’s
pose and the colour of the illumination are changed. For each
object we choose a single condition to act as a model image; in
this case we use the object captured under the “solux 3500” light
source so that we can compare our results with those from an
earlier study by Finlayson and Xu [4]. In total this gives us 20
model images which comprise the “image database” and 200 test
images.

In the study by Finlayson and Xu the authors used colour-
based image features. These included standard colour histograms
and colour histograms computed after image “normalisation”.
The normalisation schemes removed both the effect of illumi-
nant colour and the effect of lighting geometry. The results from
their work act as a benchmark for our experimental results.

The distance between two images is measured using the L1
norm of the difference between their LBP histograms. For a pair
of Q-bin histograms H1 and H2 this distance is given by:

L1(H1,H2) =
Q

∑
i=1
|H1(i)−H2(i)| (10)

For each test image we compute the distance to each of 20 model
images and then rank these distances from 1 for the smallest L1
norm to 20 for the largest. We then follow Swain and Ballard and
compute the match percentile for each test image, which is given
by (20−R)/19 where R is the rank of the correct model-image.
This value is 1 when the correct model-image is ranked first and
0 when it is ranked last (20th).

In addition to the Simon Fraser Data we also compare the
methods on the images used by Swain and Ballard [1]. In this
data set there are 66 model images and 30 test images. Each
test image contains an object from the model database that is
either rotated or partially occluded. The illumination colour is
the same for both model and test images. As before, for each
test-image we compute the distance to each model image and
rank these resulting distances. The accuracy of the classification
is summarised by the match percentile.

Results
Tables 1 and 2 show the retrieval results for the different

methods. From both Tables it is clear that the performance for the
joint histogram (LBP 3D) is significantly better than that when
the histograms are calculated independently from one another
(LBP 1D). In Table 1 the performance of the 3D LBP histogram
exceeds that of the best colour normalisation scheme. Unsur-
prisingly, the colour histogram is not a good feature for colour
constant image retrieval. In Table 2 we can see that, when the
illumination colour is not varied, the colour histogram performs
well. For this data the 3D LBP histogram also gives good results,
although not as good as the best normalisation routine. A con-
tributory factor to this result may be that the image-normalisation

1This database can be downloaded from
http://www.cs.sfu.ca/ colour/data/



Figure 2. A ball viewed under syl-wwf illumination

Figure 3. An “LBP image” for the ball under syl-wwf, black areas corre-

spond to regions that were removed from the histogram

takes account of lighting geometry as well as illumination colour,
whereas the LBP measure is invariant only to the colour of the
illumination.

Figure 2 shows an object from the database under the “syl-
wwf” lighting condition. In Figure 3 is a visual representation
of the LBP image, where the display colour at each point is the
triplet [LBPR,LBPG,LBPB] re-scaled onto the range 0 to 255.
It is this image that is invariant to changes in the colour of the
illumination.

Discussion and Conclusions
We investigated the application of the LBP texture opera-

tor to the retrieval of coloured objects under changes in illumi-
nation colour and object pose. We compared two LBP-based
approaches with two colour-based approaches. Using the joint
histogram of LBP values gave significantly better performance
than calculating histograms for the colour channels separately,
although we concede that the joint histogram also uses signifi-
cantly more parameters. The joint LBP histogram also compared
favourably with the best colour-based approach, especially when
model and test images were captured under different illuminants.
This experimental result provides support for the proposition that
the LBP operator is robust to real changes in illumination colour.
However, the LBP histogram computed independently in each
channel should be just as invariant to illumination change. This
indicates that the performance of the joint LBP histograms is a

function of both their illumination invariance, and their ability to
encode additional information about the interaction between the
colour channels.
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Results of different matching regimes for objects under different lights (Simon Fraser Data)
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