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Abstract
We have previously shown that it is possible to construct a

coordinate system in the space of illumination spectra such that
the coordinate vectors of the illuminants are located in a cone.
Changes in the space of illuminants can then be described by
an intensity related scaling and a transformation in the Lorentz
group SU(1,1).

In practice it is often difficult and expensive to measure
these coordinate vectors. Therefore it is of interest to estimate the
characteristics of an illuminant from an RGB image captured by
a camera. In this paper we will investigate the relation between
sequences of illuminants and statistics computed from RGB im-
ages of scenes illuminated by these illuminants.

As a typical example we will study sequences of black body
radiators of varying temperature. We have shown earlier that
black body radiators in the mired parametrization can be de-
scribed by one-parameter groups of the Lorentz group SU(1,1).
In this paper we will show that this group theoretical structure of
the illuminant space induces a similar structure in spaces of sta-
tistical descriptors of the resulting RGB images. We show this re-
lation for mean vectors of RGB images, for RGB histograms and
for histograms of images obtained by applying certain spatio-
spectral linear filters to the RGB images. As a result we ob-
tain estimates of the color temperature of the illuminant from
sequences of RGB images of scenes under these illuminants.

Introduction
Understanding the relation between illumination, reflection

and sensor properties is one of the most central and important
problems in color imaging and color image processing. Typical
applications where models that describe the interaction between
these three factors are useful include: white balancing in digi-
tal cameras, understanding of the mechanisms behind color con-
stancy in human perception and color information processing for
pattern recognition and computer vision are some examples.

In our previous work we developed a geometrical frame-
work for color signal processing (see [3, 5, 4]). In this frame-
work we consider only single object points in isolation. A typ-
ical example is the description of the effects of illumination
changes: Here we describe the spectral characteristics of the
changing illumination by the spectral distributions of the illu-
mination source. Such an illumination spectrum interacts with
the reflectance spectrum of an object point generating the color
signal. The color signal, in turn, interacts with the sensor (char-
acterized by its sensitivity functions) and as a result a pixel vec-
tor is generated. This is repeated for all illumination sources and
thus a sequence of pixels is generated that represent the color ap-
pearance of this object point under the illuminations as seen by
the sensor.

This is obviously a very restrictive framework correspond-
ing to the problem of analyzing the relation between the illumina-
tion and the reflection properties while being located in a room
painted in a single (unknown) color. In reality this will almost

never be the case since we can simultaneously observe the in-
teraction between a large number of different reflectance spectra
(representing different object points) and the illumination. From
this we conclude that we can usually analyze a large number of
object/illumination interactions simultaneously. A second obser-
vation is that we probably do not analyze these points individu-
ally but we can base our analysis on statistical properties of col-
lections of such points.

In this paper we will thus generalize our previous work by
analyzing the relation between illumination spectra, a sensor and
statistical properties of the reflection spectra and the pixel vec-
tors. We will show that the group theoretical structure in the
space of illuminant spectra is mapped to similar structures in
certain spaces derived from the RGB images showing a scene
illuminated by different illumination sources. In the following
section we will first give a brief description of the group theo-
retical background and the previous results regarding the illumi-
nation spectra. Then we will introduce the framework used in
the rest of the text and finally we will describe the results of our
experiments.

An Overview over Conical Color Spaces
We showed previously that it is possible to introduce a co-

ordinate system in the space of illumination spectra such that the
corresponding coordinate vectors are all located in a cone. This is
a consequence of the restriction that all illumination spectra can
only assume non-negative function values. The basic construc-
tion is as follows: Consider a collection of illumination spectra
relevant for a given application. Compute the eigenvectors (be-
longing to the largest eigenvalues) of the correlation matrix and
use them as basis vectors. Illumination spectra are now charac-
terized by coordinate vectors that contain the expansion coeffi-
cients in this new coordinate system. This representation is the
familiar principal component analysis (PCA). It can be shown
that the first eigenvector has only non-negative values and that
these coefficient vectors are all located in a cone. For many
databases it can be shown that very few eigenvectors provide a
sufficient description of the spectra of interest. In the following
we will restrict us to systems consisting of three eigenvectors.
The coordinate vectors are thus all located in a three-dimensional
cone. We will use the following notation: we write vectors with
the first three PCA-coefficients as (c0,c1,c2) . If s is the illu-
mination spectrum, bk,k = 0,1, ... are the eigenvectors and 〈., .〉
denotes the scalar product in the function space of illumination
spectra then the coefficients are given by ck = 〈s,bk〉 leading to
the approximation

s≈ 〈s,b0〉b0 + 〈s,b1〉b1 + 〈s,b2〉b2 (1)

Instead of this ”raw” coordinate vector we usually use the
scalar c0 and the complex number z = x+ iy with x = c1/c0,y =
c2/c0. This is possible since c0 > 0 (except for the perfect black
illumination). Empirically it has been shown that c0 is related to
the intensity of the source and z to its chromaticity.



From mathematics and theoretical physics it is known that
the conical structure of spaces is preserved by the so-called
Lorentz-transformations. For geometrical reasons it is there-
fore interesting to investigate if the Lorentz-transformations ap-
plied to illumination spectra have an interpretation in terms of
color science. As example consider a sequence of illumina-
tion spectra given by the black-body radiators. We describe
the black-body radiator of temperature T (measured in Kelvin)
by the spectral distribution s(T ), the PCA-coordinate vectors
as (c0(T ),c1(T ),c2(T )) and correspondingly z(T ) for the com-
plex coordinates. The relevant Lorentz Group is in this case the
group SU(1,1) consisting of the following 2x2 matrices:

SU(1,1) =
{

M =
(

α β
β α

)
: α,β ∈C; |α|2−|β |2 = 1

}
(2)

For a matrix M ∈ SU(1,1) and a complex number z with |z|< 1
we define the fractional linear transform:

M 〈z〉= αz+β
β z+α

(3)

Instead of using parameters α,β it is in our context more efficient
to use an exponential construction. Define the following three
matrices:

J1 =
1
2

[
i 0
0 −i

]
; J2 =

1
2

[
0 1
1 0

]
; J3 =

1
2

[
0 i
−i 0

]
(4)

For scalars ξ1,ξ2,ξ3 we define:

X = ξ1J1 +ξ2J2 +ξ3J3 (5)

It can then be shown that eX is an element in SU(1,1). Fur-
thermore we find that for every (fixed) matrix X the matri-
ces
{

etX ,t ∈ R
}

form a so-called one-parameter subgroup. For a
fixed X and a real value t we define

Mt = etX (6)

With these notations we can now summarize our previ-
ous experiments with black-body radiators as follows: Denote
by z(T ) the chromaticity coordinates of the black-body radia-
tors as introduced above. Select a fixed temperature T0 and
write z0 = z(T0). Then we can find a matrix X such that the
curve z(T ) in the complex plane can be approximated by the
curve Mt 〈z0〉. This approximation holds if we consider the two
curves as sets of points. If we parameterize the curve in the com-
plex plane by the inverse temperature, i.e. consider z(1/T ) then
it can be shown that the exponential parameter t and the inverse
temperature 1/T are almost linear functions of each other. This
is interesting since human perception of color differences is also
related to inverse temperature (see [9] and [10] pages 224-225).

Apart from the space of illumination spectra (with its con-
ical shape) we need to consider two other function spaces: the
space of reflection spectra and the space of color signals. A re-
flection spectrum is by definition a function r(λ ) where r(λ ) de-
scribes the probability that a photon of wavelength is reflected
from the object. By definition we have 0 ≤ r(λ ) ≤ 1 and the
space of reflection spectra forms an (infinite-dimensional) cube.
A color signal is defined as the (pointwise) product between il-
lumination spectra and reflection spectra, i.e. c(λ ) = r(λ )s(λ )
and for a fixed, given illumination we can think of the space of

color signals as a copy of the conical space of illumination spec-
tra. Another way to describe the same relation is to view the
illumination spectrum s as an operator that maps one color signal
space (the space of reflection spectra under perfect white illu-
mination) to another color signal space (the space of reflection
spectra under illumination s. We extend this to the whole color
signal space and arrive at the following operator interpretation of
the illuminant:

s : C → C ;c(λ ) �→ c(λ ) · s(λ ) (7)

Here C is the space of color signals and we use s to denote both,
the illumination spectrum and the corresponding operator. In the
following we will study the behavior of operators derived from
this operator.

The General Model
In the basic model the illumination spectrum defines an op-

erator on the space of color signals. In almost all situations the
illumination interacts not only with a single reflectance spectrum
but with a large collection of reflectance points in a scene. The
resulting collection of color signals will be measured with the
help of sensors. In the case of human color vision the sensors
are the receptors in the eye, in the case of technical systems the
sensors are the chips in digital cameras or analog film. The result
of this interaction between the color signals and the sensors is a
color image. This transform from the space of color signals C
to the space of images I is given by the first ’vertical’ transfor-
mation in Figure 1. The same camera operator operates on the
original color signals and on the color signals generated by the
illumination operator s. As a result we see that the illumination
operator s induces a new operator si on the space of images. This
operator describes the change of images as a result of an illumi-
nation change.

In almost all imaging systems these raw measurements on
the sensor level are followed by post-processing operations. In
the case of human color vision typical post processing is done
by the receptive fields. In the case of digital cameras post-
processing consists of various types of demosaicing and image
processing. Typical operations at that level are linear filter oper-
ations as indicated in the lower part of Figure 1. The result of the
post processing is a set of filtered images and we denote the space
of all filter images, generated by a given filter operator, by F . As
before the illumination change s induces a transformation s f on
the space F .

The last component of our system is the characterization of
images or filter images in terms of probability distributions or
statistical descriptors (like means or moments) computed from
these probability distributions. We denote the space of probabil-
ity distributions (or the space of their descriptors) by P and Q
for the images or the filtered images respectively. Here again
the illumination operator s induces operators ti and t f on the
spaces P and Q.

Group Theoretical Structures
The general model presented in the last section describes

the relation between illumination changes and induced changes
in color images, filter images and spaces of descriptors is valid in
general and does not take into account the fact that illumination
changes are often described by curves in the space of illumina-
tion spectra. The main goal of this paper is the investigation of
the question how the structure of the one-parameter curves in il-
lumination space translates to the structure of the spaces of color
images, filter images and probabilistic descriptor spaces. It is



Figure 1. Illumination changes and induced transforms of images, filtered

images and their probabilistic descriptors

very difficult to make some general observations since the effect
of the illumination changes depends on the statistical character-
istics of the collection of reflection spectra on which they oper-
ate. In the extreme case where the object points are all perfect
black the illumination changes will have no effect. In the other
extreme case where all reflectance spectra are perfect white re-
flectors we are back at the case of changing illumination spectra
since the color signals are identical to the illumination spectra.
Real scenes can therefore be expected to show a behavior some-
where between the extreme cases of no change at all and the
one-parameter transformation rules observed previously.

In the following we will select sequences of black-body
radiators as typical examples of changing illumination spectra.
This choice was natural since black-body radiators are exactly
defined by an equation that describes the spectral distribution as
a function of the temperature. Earlier we have shown that such
sequences can be described by one-parameter subgroups of the
Lorentz-group SU(1,1) and that there is a close relation between
the group parameter and the mired-parametrization of the black-
body radiators. Also from a practical point of view black-body
radiators are of interest since many color imaging software pack-
ages allow the user to manipulate color images with the help of a
temperature parameter that links the current operation to black-
body radiators of the given temperature.

With this selection we now have a sequence of illumination
spectra s(T ) for a given sequence of temperatures T0, . . . ,TN . We
always use the inverse temperature to define the increment be-
tween neighboring sources and we have thus: 1/TN−k = 1/TN +
kΔ where Δ is the fixed increment parameter. For given start-
and end-temperatures T0,TN we write for the illumination spec-
tra sk = s(Tk). For the other operators we choose a corresponding
notation, i.e.: sk

i for the image operators, sk
f for the filter opera-

tors and tk
i ,tk

f for the transformations in the probability-related
spaces. We know from previous experiments that we can find
Lorentz-transformations Mk such that Mk 〈z0〉 is a good descrip-
tor of the chromaticity of the corresponding black-body radia-
tor sk. Since the Mk are a discrete sampling from a one parameter
group we can find a matrix X such that Mk = ekX .

Before we describe our experiments and the results in de-
tail we have to mention another application of the Lorentz group
SU(1,1) that will be used later. In many experiments we choose

(a) NCS colors (b) Scene3 (c) Scene5

Figure 2. Simulated RGB images for three multispectral images

to describe properties of a collection of objects (like the pixels in
an image) by their probability distribution. Probability distribu-
tions are, like spectral distributions, functions that can only as-
sume non-negative values. From the general framework of func-
tion spaces of non-negative valued functions we know that the
space of PCA coefficients of probability distributions also has a
conical structure. After projecting sequences of probability dis-
tributions to a two-dimensional disk (corresponding to the chro-
maticity disk for spectral distributions) it is therefore possible to
use the same SU(1,1) based methods to investigate the properties
of these histogram-based sequences on the unit disk.

Experiments
In our experiments we use as illuminants sequences of

black-body radiators in the mired-parametrization. Given the
start temperature T0, the end temperature TN and the num-
ber N +1 of radiators in the sequence we denote the k-th element
in the sequence by sk as described in the previous section.

The behavior of the induced images and descriptors is
highly dependent on the statistical properties of the sets of re-
flectance spectra of the object under consideration. In the fol-
lowing we will use three different objects to represent the dif-
ferent nature of important types of scenes. The first image is
a simulated multispectral color checker. It consists of a collec-
tion of color patches defined by reflectance spectra from the NCS
color atlas. The two other images are multispectral images mea-
sured by a multi-channel camera. The first image (named scene3)
is an image of a natural outdoor scene while the second image
(scene5) shows an indoor scene with man-made objects. The
images are part of the collection described in [7]. As a camera
model we use the estimated camera sensitivity functions of a con-
sumer camera, a Canon EOS 10D. The methods used to derive
these sensitivity functions are described in [8]. The simulated
images of the three objects under neutral illumination (defined
by a flat spectral distribution) are shown in Figure 2.

A typical distribution of the chromaticity coefficients for a
sequence of black-body radiators and their group-theoretical ap-
proximations is shown in Figure 3. Here we used 30 black-body
radiators from 3000K to 14000K in the mired sampling. This is
the sequences of illuminants used in the following experiments.

In the first experiment we simulate a sequence of RGB im-
ages where the multispectral images describes the natural out-
door scene and the man-made indoor-scene, the camera used is
the Canon EOS 10D and the illuminants are the 30 black-body
radiators described above. This results in a sequence of 30 RGB
images. All RGB vectors of an image under a given illumination
are located in a cube. In the cube we introduce a new coordinate
system with the diagonal as the first axis and the second and third
axes perpendicular to the diagonal. This is achieved by applying
the transformation:

(R,G,B) �→
(

R+G+B√
3

,
R−G√

2
,

R+G−2B√
6

)



  0.2

  0.4

  0.6

30

210

60

240

90

270

120

300

150

330

180 0

 

 
Original chromaticities
Estimated chromaticity

Figure 3. Chromaticity coordinates: Planck spectra and approximations
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Figure 4. Variation of mean vectors and approximations for scenes 3 and 5

In this new coordinate system the cube becomes a double-
pyramid with the black and the white point at the bottom and the
top and we can view the points with coordinates ( R−G√

2
, R+G−2B√

6
)

as points of the unit disk. Describing the images with the mean
values of the distribution of these vectors of an image we see
that (the intensity-independent properties of) an image can be
described by a point on the unit disk. In the framework shown
in Figure 1 we have the following processing: A multichannel
image is a point in the space C , the image obtained by the cam-
era is a point in the space I and the mean vector is an element
of the space P which is the unit disk (or rather the interior of a
regular six-sided polygon). The operator s is the pointwise multi-
plication with the illumination spectrum, si describes the induced
color change in the RGB image and ti is a mapping of the unit
disk by means of the mean vector of the ( R−G√

2
, R+G−2B√

6
) points.

In Figure 4 the location of the mean vectors and the esti-
mated SU(1,1) curve are shown for the two multichannel images.
The locations of the points computed from the simulated images
are shown by the green circles, the locations of the points ob-
tained by the SU(1,1) approximation are the black points. We
see that the mean vector curves generated by the illumination
changes are very well approximated by the SU(1,1) approxima-
tions. One interesting difference between the curves for the in-
door and the outdoor scene is the radial scale in these two dia-
grams. We see that the variation for the indoor scene is much
larger than the variation for the outdoor scene. This is of course
an effect of the larger variation of reflectance spectra in the in-
door scene. It illustrates how scene properties influence the prop-
erties of the mappings involved.

In the next experiment we characterize color images by their
RGB-color histogram. The experiment consists of the following
processing steps: we first compute the histograms for all (simu-
lated) RGB images showing the NCS multispectral chart under
the black-body illuminants mentioned above. Then we computed
a PCA-basis in histogram space by computing the eigenvectors
of this histogram set. This basis is then used in all further experi-
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Figure 5. Chromaticity coordinates from histograms and their approxima-

tions for scene3 and scene5. Diamonds correspond to the position of the

reference images calculated from the NCS atlas

ments (notice that coordinate vectors always depend on the basis
selected to compute them). In the next step we then computed
the RGB histograms for the simulated RGB images derived from
the multispectral scenes (scene3 and scene5) under the same set
of black-body illuminants. These histograms are described in the
common coordinate system defined by the basis computed from
the NCS chart. The camera model is always given by the esti-
mated sensitivity functions of the Canon EOS 10D. Finally the
PCA-coordinate vectors of the histograms are projected to the
chromaticity disk in the same way as for the ordinary PCA co-
ordinates of the spectra. As a result we get curves on the disc
that we can analyze with the standard tools of group-theoretical
regression. This is possible since probability distributions are
functions with non-negative function values and we showed that
such function spaces have a conical structure reflected in the con-
ical distribution of the PCA expansion coefficient vectors.

Figure 5 shows the curves obtained for scene3 (the natural
scene) and scene5 (the man-made scene). Again we use green
circles for the points from the RGB histograms and black points
are the group theoretical approximations of the green curve. As
a reference curve (blue diamonds)we show the location of the
points computed from the histograms of the NCS chart, defining
the coordinate system used. We see that also in this experiment
the group theoretically based regression gives a good approxima-
tion of the original data.

The previous experiments show that the curve defined by an
SU(1,1) one-parameter subgroup in the illumination space maps
to related SU(1,1) curves in the spaces of the chromaticity part
of the mean vector of the RGB images and the RGB histogram
space. The form of the curves is given by the matrix X , the po-
sition by the start point z0 and the location on the curve by t
(see Eqs. (5), (3) and (6)). From the definition Mt = etX follows
also that the pairs (t,X) and (γt, 1

γ X) define the same matrix Mt

for all non-zero constants γ . From this relation we obtain the
following strategy for estimating the temperature of an illumi-
nant in a sequence of black-body radiators: From the chromatic-
ity descriptors (represented by the points on the unit disk) we
compute the parameters of the matrix X and the parameter se-
quence tk. The distance between two illuminants is related to
the difference between their t parameters and we can estimate
the temperature based on these differences. These relations are
illustrated in Figure 6. In these Figures select the point of the
unit disk corresponding to the illuminant with the highest tem-
perature. We compute then the distances of the other points on
the unit disk as the accumulated sum of the t parameters along
the corresponding SU(1,1) curve. For every description we ob-
tain thus a mapping from the temperature of the illuminant to
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Figure 6. Relation between curve length and the color temperature for the

spectral description (Planck) and the RGB histogram descriptors computed

from the NCS, scene3 and scene5 multi- spectral images

a distance value. In Figure 6 we illustrate this mapping for the
SU(1,1) description of the spectral distribution of the black body
radiator (denoted by Planck) and the histogram descriptors com-
puted from the RGB images of the NCS, scene3 and scene5 mul-
tispectral scenes measured by the Canon EOS 10D camera. In
Figure 6(a) we use as x-axis the temperature scale whereas we
use the inverse temperature as x-axis in Figure 6(b). From the
figures we see that there is a linear relation between the color
temperature in the mired parametrization and the curve length
of the descriptors on the unit disk. For the PCA-based descrip-
tion of the spectral distribution this relation was observed be-
fore but this result shows that a corresponding linear relation also
holds for the PCA-based description of RGB histograms of cam-
era images. This simple relation between the group theoretical
descriptions and the mired parametrization of color temperature
is remarkable since perception-based color differences are also
similar to the mired scale.

Next we include an linear filtering processing step and com-
pute histograms of the resulting images. As an example we use
the simplest version of a filter system based on the representation
theory of finite groups (see [2, 1, 6]). These filters are based on
the representations of the dihedral group D(4) as symmetry group
of the grid and the representations of the permutation group S(3)
as symmetry group of the color channels. In the simplest case
(used here) the filter kernels have size 2x2 and a filter system con-
sists of 12 filter functions. From the representation theory of the
permutation group we find that the 2x2x3 (2x2 pixels with three
RGB channels) RGB window is first recoded into the (R+G+B,
R-B, G-B) combinations. The the following spatial filters are
applied to each of these channels.

F0 =
(

1 1
1 1

)
F1 =

(
1 −1
−1 1

)

F2 =
( −1 −1

1 1

)
F3 =

( −1 1
−1 1

)
(8)

We denote these filters by Fl
k where k = 0, . . .3 as above and l =

0,1,2 denote the R + G + B,R−B,G−B combinations. It can
be shown that they are the transforms of spatio-spectral images
that correspond to the Fourier Transform for time signals. It is
also known that the internal structure can be used to create fast
implementations corresponding to the Fast Fourier Transform.
Furthermore it can be seen from their definition that their compu-
tation requires only additions and subtractions. From the general
theory follows also that the first two filters F0,F1 can be treated
separately whereas the last two F2,F3, the horizontal and ver-
tical edge filters should be treated as a pair. The filter results
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(f) F2
3

Figure 7. Chromaticity coordinates for images filtered with (a) F0
0 , (b) F0

3 ,

(c) F1
0 , (d) F1

3 , (e) F2
0 and (f) F2

3

obtained by applying these two filters should be re-coded and we
will use the length and the angle between these pixel-wise, two-
dimensional filter vectors. This is the well-known separation of
edge-strength and orientation in low-level image processing.

Applying these filter systems to an RGB image results in
12 new images and together with the magnitude/angle recoding
we obtain an 18-dimensional feature vector at each point in the
image. We computed for each of these 18 images its histogram
and generated thus for every RGB image series 18 new series of
images together with their 18 histogram descriptions. For each
of these histogram sequences we computed a PCA representation
and described their contributions to the second and third eigen-
vector by points on the unit disk. Some plots of the sequences on
these disks are provided in Figure 7. These plots were generated
from the NCS color atlas. The sequences for six different filters
are shown in Figure 7(a)-(f). The plots in the first column (a,c,e)
are computed by a spatial smoothing of the intensity (R+G+B),
the R-B and the G-B image. The second column (b,d,f) shows
the result of the vertical gradient filter applied to the three images
(R+G+B, R-B, G-B). For filters involving negative coefficients it
can be seen that the filter response zero dominates the resulting
histogram. We ignored the corresponding histogram bin in sub-
sequent computations.

For the magnitude/angle results we took into account only
pixels where the edge-strength was above a pre-defined thresh-
old. For the remaining pixels in the image we computed the his-
tograms and their representation in the PCA-coordinate system.
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The positions for the (G-B) orientations computed from Scene5
and the approximating SU(1,1) curve are shown in Figure 8. A
visual inspection of the curves in Figures 7 and 8 has to take into
account two factors: the length of the curves and the distance be-
tween the measured parameter points and the SU(1,1) curve. The
variation for the spatial smoothing filters for the (R+G+B) image
is relatively small (low values for the radius) while the variation
for the corresponding filters for the (R-B) and (G-B) images is
much larger. We therefore show in Figure 9 the curve lengths and
the approximation errors (both computed based on the hyperbolic
distance between points on the unit disk) of all the original filter
results and the derived edge strength and edge orientations rep-
resentations. We can see that the spatial smoothing of the (R-B)
and (G-B) images and the orientation values computed from the
(R-B) and (G-B) images are clearly superior to the other results
since they produce curves on the unit disk that are significantly
longer than the curves originating in the other filter results.

Conclusions
In this paper we showed that the SU(1,1) structure of the

black body radiators in the space of illumination spectra maps
to similar structures in certain spaces of statistical descriptors of
RGB-images. We showed that this relation holds for the mean

of the RGB vectors and the PCA-coordinate vectors of RGB his-
tograms. We also showed that PCA-coordinate descriptions of
histograms of certain spatio-spectral filter result images follow
the SU(1,1) curve structure to a large extent. Especially the fil-
tered images computed from the (R-B) and (G-B) images show
this relationship.
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