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Abstract
The information preserved in identifying surfaces solely by

their color can be quantified by measures defined by Shannon, in-
cluding capacity and mutual information. The aim of this study
was (1) to determine whether the capacity of an additive Gaus-
sian channel provides an asymptotic upper bound to mutual in-
formation estimated for natural scenes under different illumi-
nants, and (2) to explore the effect of different color represen-
tations on mutual-information estimates.

Introduction
Color is an imperfect code for representing surfaces in a

scene. This is because the number of degrees of freedom in a
sensor system, three for the cones in the normal human eye or
a typical camera, is smaller than the number of degrees of free-
dom needed to specify different spectra [1]–[4]. Surfaces that
match under one light therefore need not match under another:
the phenomenon of metamerism. As a consequence, identify-
ing surfaces on the basis of their color will lead to errors when
the illuminant on scene changes. Such errors represent a loss of
information. How much information, then, is preserved when
surfaces are coded solely by their color?

One way to address this question is to estimate a quan-
tity such as Shannon’s mutual information [5, 6]. But making
a direct estimate based on the probabilities involved leads to
difficulties when those probabilities are small [7]. Instead, an
asymptotic upper bound to the mutual information may be ob-
tained from an analysis of the capacity of an additive Gaussian
channel [8, 9]. The objective of the present work was to test
whether capacity is an asymptotic upper bound to mutual infor-
mation when estimated with samples of increasing size from nat-
ural scenes, and to explore how different color spaces [10, 11],
color-difference formulae [12], and spectral sharpening [13] af-
fect mutual-information estimates.

Methods
Hyperspectral Images

Scene reflectances were drawn from a set of eight hyper-
spectral images [8] (three of which are shown in Fig. 1). These
images were from rural and urban areas in the Minho region of
Portugal. The size of the images was approximately 1344× 1024
pixels, and spectra at each pixel were defined at 10-nm wave-
length intervals over 400–720 nm. Further technical details are
available elsewhere [14, 8, 9].

Representation of Scenes
In computational simulations, scenes were illuminated suc-

cessively by daylights of correlated color temperatures of 4000
K, 6500 K and 25000 K. For each of the three illuminants, the
spectrum of the reflected light at each pixel was converted to
tristimulus values and then to corresponding values (Xc,Yc,Zc),
calculated with the CMCCAT2000 chromatic-adaptation trans-

form [10] under the assumption of full adaptation and with D65
as reference. A version of CMCCAT2000 with sharp chromatic-
adaptation transform [13, 15] was also used. The tristimulus val-
ues (Xc,Yc,Zc) were transformed to CIELAB values (L∗,a∗,b∗)
with D65 as reference. Since CIELAB space is well known to
be perceptually non-uniform [11], the color-difference formulae
CIEDE2000 and CMCDE [12, 17] were each used to evaluate
the differences in color-code values, in addition to the Euclidean
distance.

Information-theoretic Measures and Estimates
For a particular scene, index the pixels in image 1 of the

scene under illuminant e1 by variable X and in image 2 of the
scene under illuminant e2 by variable Y . Suppose that in some
task the probability of a particular pixel x in image 1 being chosen
is p(x) = P{X = x} and of a particular pixel y in image 2 being
chosen is p(y) = P{Y = y}, where there are N pixels in each
image. The degree of uncertainty associated with each image
can be quantified by the entropy [5, 6] defined as follows:

H (X) =−
N

∑
x=1

p(x) log p(x), (1)

with a similar expression for H(Y ). If the conditional probability
p(x|y) = P{X = x|Y = y} is known, then the conditional entropy
is given by the expression:

H (X |Y ) =−
N

∑
y=1

p(y)
N

∑
x=1

p(x|y) log p(x|y). (2)

This quantity represents the uncertainty about image 1 given im-
age 2. The mutual information can then be expressed as the dif-
ference of the two entropies:

I (X ;Y ) = H (X)−H (X |Y) . (3)

Mutual information represents the reduction in uncertainty about
image 1 given image 2. If the basis of the logarithm is 2, then the
mutual information is expressed in bits (the convention adopted
here).

As noted earlier, estimating I(X ;Y ) directly from the prob-
abilities leads to difficulties [7]. In principle, each pixel y un-
der illuminant e2 may be coded with value (L∗2,a

∗
2,b
∗
2), say,

and compared with each pixel x under illuminant e1 coded
with value (L∗1,a

∗
1,b
∗
1) and then matched according the clos-

est code value. Other color codes based on tristimulus values
(Xc,Yc,Zc) or transformed CIELAB values (L′,C′,H ′) [12], with
either CIEDE2000 or CMCDE color-difference formulae, can be
used.

An alternative approach is to consider the distributions of
the color-code values (L∗,a∗,b∗) under the two illuminants. An
asymptotic upper bound C on the mutual information I(X ;Y ), for
large enough N, can be estimated from an analysis of the capac-
ity of an additive Gaussian channel [6] by considering the dif-
ferences in code values under the two illuminants as noise. The



Figure 1. Examples of pictures obtained with a hyperspectral imaging system [8].

capacity of this Gaussian channel has a formulation in terms of
the covariance matrix of the code values of the scene under e1
and covariance matrix of the noise [9]. Thus, let Σ1 be the co-
variance matrix of the code values (L∗1,a

∗
1,b
∗
1), and ΣΔ the covari-

ance matrix of the code value differences (ΔL∗,Δa∗,Δb∗). Then
the capacity of the channel is given by the following:

C =
1
2

log

( |Σ1 +ΣΔ|
|ΣΔ|

)
. (4)

Neither code values (L∗,a∗,b∗) nor the differences
(ΔL∗,Δa∗,Δb∗) are exactly normally distributed. Even so, it may
still be shown that (4) cannot be exceeded with normally dis-
tributed code values and nearest-neighbor identification [16].

Another approach to the estimation of I(X ;Y) is to calcu-
late the number of pixels likely to be in error in each match [9].
The idea is to take a random sample, say n, from image 2 and
count for each pixel x in that sample how many pixels in image 1
are within the tolerance defined by the error in matching, i.e. the
number of pixels incorrectly matched, or number of errors, for
x. For two different pixels, the error in matching is, in general,
different, and, even if they are equal, the number of pixels incor-
rectly matched might differ. Since the pixels in image 2 are cho-
sen randomly, the errors are also random, and the probability of
having a particular number of errors can then be estimated. Once
the probabilities of error are estimated, the conditional entropy
(2) follows. If the sample is random and uniform, the entropy
(1) is equal to logn, and the mutual-information estimate follows
from (3).

To take into account the variance-covariance structure of
the differences in color-code values due to illuminant changes,
the Mahalanobis (statistical) distance was used to quantify the
goodness of the match. For CIEDE2000 and CMCDE color-
difference formulae, in which the distance is already determined
[12, 17], mutual information was not estimated.

Results and Comment
Capacity and mutual information were estimated using both

CIE 1931 2◦ and CIE 1964 10◦ standard observers. Despite
variations in the actual values, the differences between capac-
ity and mutual-information estimates were about the same. The
results shown here correspond to the CIE 1964 10◦ standard ob-
server, chosen for its compatibility with the CIEDE2000 color-
difference formula [17]

Channel Capacity Estimation
Tables 1–3 show the mean channel capacity C (and stan-

dard deviation) estimated from (4) for the eight scenes, with three
different color codes: normalized and unnormalized (Xc,Yc,Zc)

Table 1. Mean capacity C (and SD) in bits for eight scenes
under three different illuminant changes and (Xc,Yc,Zc) color
code. Upper and lower sections for unsharp and sharp codes.

Unnormed Normed
Unsharp 4000 K – 6500 K 12.42 (0.53) 11.42 (0.79)

6500 K – 25000 K 12.33 (0.70) 11.38 (0.88)
4000 K – 25000 K 09.57 (0.55) 08.64 (0.82)

Sharp 4000 K – 6500 K 15.86 (0.72) 14.28 (1.11)
6500 K – 25000 K 15.03 (0.70) 13.62 (1.00)
4000 K – 25000 K 12.51 (0.64) 11.08 (1.00)

Table 2. Details as for Table 1 but for (L∗,a∗,b∗) color codes.

Unnormed Normeda

Unsharp 4000 K – 6500 K 12.32 (0.55) 11.90 (0.45)
6500 K – 25000 K 12.27 (0.57) 11.57 (0.42)
4000 K – 25000 K 09.47 (0.52) 09.00 (0.39)

Sharp 4000 K – 6500 K 15.83 (0.76) 14.79 (0.89)
6500 K – 25000 K 14.98 (0.78) 13.90 (0.63)
4000 K – 25000 K 12.46 (0.65) 11.54 (0.65)

a Scene (c) of Fig. 1 cropped to remove dark areas

Table 3. Details as for table 1 but for (L′C′H′) color codes and
both CIEDE2000 and CMCDE color-difference formulae.

CIEDE2000 CMCDE
Unsharp 4000 K – 6500 K 11.24 (1.31) 11.53 (1.33)

6500 K – 25000 K 10.66 (1.34) 11.09 (1.36)
4000 K – 25000 K 08.60 (0.88) 08.93 (0.90)

Sharp 4000 K – 6500 K 13.63 (1.64) 13.94 (1.67)
6500 K – 25000 K 12.53 (1.58) 13.04 (1.65)
4000 K – 25000 K 10.58 (1.25) 10.96 (1.31)

(Table 1); normalized and unnormalized CIELAB (L∗,a∗,b∗)
(Table 2); and transformed CIELAB (L′,C′,H ′) [12] (Table 3),
this last code using CIEDE2000 and CMCDE color-difference
formulae. The illuminant changes were 4000 K to 6500 K, 6500
K to 25000 K, and 4000 K to 25000 K. The tables are divided
into upper and lower sections: the upper for complete adap-
tation under CMCCAT2000, and the lower the same but with
a sharp chromatic-adaptation transform. The normalized data
in the last two columns of Tables 1 and 2 refer to a repetition
of (Xc,Yc,Zc) and (L∗,a∗,b∗) codes but after applying an em-
pirical transformation that forced the distributions to be Gaus-
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Figure 2. Mutual information as a function of sample size (solid curve) and channel capacity (dotted line) for scenes (a) and (b) of Fig. 1 for (L∗,a∗,b∗) color

code. The diagonal dashed line show the maximum information as function of sample size.

sian with the same mean and standard deviation as the original.
This transformation was introduced because the distributions of
(Xc,Yc,Zc), (L∗,a∗,b∗) and (L′,C′,H ′) code values are not normal
and, as noted earlier, the calculation of capacity depends on the
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Figure 3. Effect of a sharp chromatic-adaptation transform on capacity

and mutual-information estimates. Details as for Fig. 2. Black solid curve

and horizontal dotted line are for unsharp data and gray solid curve and

horizontal dotted line for sharp data.

channel being Gaussian. Scene (c) of Fig. 1 yielded an abnor-
mally low capacity estimate for the (L∗,a∗,b∗) color code after
normalization owing to the presence of dark areas, which pro-
duced lightness differences ΔL∗ that were far from normal. This
scene was cropped to remove these areas.

Capacity estimates for (Xc,Yc,Zc) and (L∗,a∗,b∗) color
codes were about 1 bit larger than for (L′,C′,H ′) codes. For
sharp chromatic-adaptation transforms, the differences were
even larger (about 2 bits). In contrast, estimates for the normal-
ized (Xc,Yc,Zc) and (L∗,a∗,b∗) color codes were closer (lower
than 0.4 and 0.8 bits on average for unsharp and sharp chromatic-
adaptation transforms, respectively). On average, spectral sharp-
ening increased capacity estimates by 3.0 and 3.1 bits for the un-
normalized (Xc,Yc,Zc) and (L∗,a∗,b∗) color codes, respectively;
by 2.5 and 2.6 bits for the normalized (Xc,Yc,Zc) and (L∗,a∗,b∗),
respectively; and by 2.1 bits for the (L′,C′,H ′) codes with
both color-difference formulae. For any particular illuminant
change, capacity estimates were reasonably stable over color
codes: the standard deviation varied from 0.4 to 1.4 bits with
CMCCAT2000 and from 0.6 to 1.7 bits with a sharp chromatic-
adaptation transform. Estimates for (L′,C′,H ′) with both color-
difference formulae were very similar across illuminant changes,
and closer to the normalized (Xc,Yc,Zc) and (L∗,a∗,b∗) values
than to the unnormalized values.

Mutual Information Estimation
As with capacity estimates, for any particular illuminant

change, mutual-information estimates remained reasonably sta-
ble over color codes (for a sample size of 214). Mutual-
information estimates also increased with sharp chromatic-
adaptation transforms. Normalization had a small effect on



mutual-information estimates for (Xc,Yc,Zc) and (L∗,a∗,b∗)
codes, but in contrast to capacity estimates, it led to an increase
rather than a decrease in the estimate.

Fig. 2 shows mutual-information estimates (solid curve)
for (L∗,a∗,b∗) color codes as a function of sample size (here
extended to 216), and the corresponding capacity C (horizon-
tal dotted line). Scene labels refer to Fig. 1. For image
(b) mutual-information estimates were lower than capacity es-
timates, but this difference was about the same for all illumina-
tion changes. Similar results were obtained for the other scenes
with (Xc,Yc,Zc). Fig. 3 shows mutual-information estimates for
sharp and unsharp chromatic-adaptation transforms. The de-
pendence on sample size in the two conditions is similar, but
with the sharp transform the gradient of the information function
decreases more slowly with sample size than with the unsharp
transform, consistent with their different asymptotic limits. Simi-
lar plots were obtained for other scenes and illumination changes.
Spectral sharpening seems to have the same effect on capacity as
on mutual-information estimates.

Conclusions

The existence of metamerism implies that information is
lost when identifying surfaces in a scene solely on the basis of
their color. As shown here, the capacity of an additive Gaussian-
channel model provides an approximate asymptotic upper bound
on the estimate of the information preserved, the value depending
on the particular scene, illuminant change, and color representa-
tion. A potential application of this approach is in providing an
objective measure of the efficiency of different coding strategies
in the presence of unreliable image data.
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