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Abstract 

We introduce a new method for color image sharpening based 
on S-CIELAB extension. S-CIELAB involves a series of smoothing 
spatial filters in the opponent color space to approximate the 
contrast sensitivity functions of the human vision system. The 
filters are linear combinations of Gaussian masks. We combine 
these spatial filters with the Laplacian operator in each opponent 
channel to obtain the sharpened image. The Laplacian of the 
smoothed components can be simplified by introducing the 
Laplacian of Gaussian (LoG) operator. Alternatively, the LoG 
operator can be approximated by the difference of Gaussians 
(DoG) operator. Moreover, the use of DoG operator can be 
justified since it is used to model the receptive field performance in 
early human vision. The resulting image is subtracted from the 
image in each opponent channel and then back transformed to the 
device independent representation space (XYZ) to obtain the final 
sharpened image. 

The method is tested and applied to digital color images. The 
results are compared with other results obtained by applying the 
LoG operator to the intensity channel only (keeping the chromatic 
components unchanged), or by applying the simple Laplacian to 
the image components in two representations (opponent color 
space and RGB). 

Introduction  
Edges and object contours in images are usually noisy and 

badly defined areas as a consequence of several possible reasons: 
the point to spread function of the camera lens, the sensor and/or 
display resolution, viewing conditions, digital operations such as 
image compression, halftone patterns, etc. There are a large 
number of applications for which image edges or the differences 
between adjacent light and dark sample points in an image need to 
be emphasized or sharpened. But image sharpening is a double-
edged sword: it may wonderfully enhance an image but, on the 
other hand, an improper or excessive use of it affects the image 
producing artifacts such as overly contrasted contours, edges that 
look like halos around objects, jagged edges, and specked or 
mottled areas, increasing noise, etc. On the other hand, there are 
evidences that show that smoothing and sharpening spatial filters 
are in the basis of the receptive field performance of the primary 
stages of the human vision.  

The use of the Laplacian operator to enhance grayscale 
images by edge sharpening is widely known. The digital 
application of this operator is made by convolving a mask whose 
kernel computes the addition of the weighted gray-level 
differences between a pixel and its neighbors. The operator has 
been extended to color images by applying it to each R, G, B 
component separately and combining the result to yield the 
sharpened color image [1]. Other linear filters based on first-order 
and second-order derivatives that perform as operators for edge 

detection in grayscale images have been also extended to color 
images in the same way. As it has been reported, the simple 
extension of classical gray level methods to the RGB channels is 
not the best solution. [2-7] In fact, reasonably good results can be 
obtained by sharpening edges just in the intensity component while 
keeping unchanged the chromatic components of hue and 
saturation [8]. In the work of Di Zenzo [2] color images are treated 
as multivalued functions for which the tensor gradient is used in a 
more effective edge detection. A more abstract treatment was done 
by Sochen et al. [4,5]. They viewed images as embedding maps 
that flow toward minimal surfaces. They considered a color image 
as a 2-D surface in a 5-D space (x, y, R, G, B). Their geometric 
framework led to build powerful smoothing and scale space 
algorithms. In the mathematics developed in Refs. [2-7] the feature 
coordinates of a color image are the intensity R, G, B values, 
although the authors of Ref. [5] mentioned the possibility of using 
a Euclidean space like the CIELAB. This space has been also used 
as a basis to define a color difference based Laplacian operator for 
color image sharpening in Ref. [9]. But CIELAB, as well as other 
standard systems, was tested against data from color appearance 
judgments of large uniform patches. In consequence, it should not 
be used to determine the color difference between images on a 
pixel-by-pixel basis because a point-by-point computation of the 
CIELAB error tends to produce larger errors at most image points 
than the perceived ones [10]. 

Zhang and Wandell described a spatial extension to the 
CIELAB color metric, known as the S-CIELAB metric [10], which 
can be applied to complex stimuli such as digital images, when 
they are viewed at different distances. They use a series of spatial 
filters in the opponent color space AC1C2, containing one 
luminance channel (A) and two chrominance channels (C1,C2). The 
filters are smoothing filters consisting of a linear combination of 
Gaussian masks that approximate the contrast sensitivity functions 
of the human vision system. The filtered image is then back 
transformed to the CIELAB representation. S-CIELAB allows one 
to measure the perceived color differences by applying the 
standard CIELAB formula E to the filtered images pixel-by-
pixel. S-CIELAB has been used to measure color reproduction 
errors in images [10], to predict texture visibility of printed 
halftone patterns [11], to evaluate the effects of image compression 
[10] and to segment color images [12]. This technique can be 
implemented in both the spatial and the frequency domains [13]. 
The CIEDE2000 color difference formula combined with S-
CIELAB has been compared with other existing CIE color 
difference formula and three different viewing conditions in Ref. 
[13]. Recently, a new model of the contrast sensitivity functions 
that is specifically designed for use in image-difference and image-
quality models has been introduced [14]. 

In this work, we introduce a new method for color image 
sharpening based on S-CIELAB, which offers an interesting 
approach to deal with digital color images by introducing the 



 

 

models of the human vision system. We combine the spatial 
filtering with the Laplacian operator in each channel of the 
opponent space to obtain the sharpened image (Figure 1). Since the 
spatial filters used in S-CIELAB are linear combinations of 
weighted Gaussian functions, the application of the Laplacian 
operator to the spatially filtered components can be further 
simplified by introducing the Laplacian of Gaussian (LoG) 
operator [15]. This operator takes advantage of the properties of 
convolution and derivatives and is widely used as an edge detector 
with reduced sensitivity to noise. The LoG operator can be 
approximated by the difference of Gaussians (DoG) operator that 
can be computed by applying two Gaussian operators with 
different spread values to an image and forming the difference of 
the resulting two smoothed images [15]. The use of DoG operator 
can be justified since it has been considered to model the receptive 
fields in early human vision.  

Summarizing, a modified linear combination of Gaussian 
functions in the opponent channels will allow us to combine the S-
CIELAB transformation with the DoG operator. The resulting 
image can be subtracted from the image component in each 
opponent channel and then back transformed to the device 
independent representation space XYZ. 

As far as we know, this compact combination of S-CIELAB 
with derivative edge detectors in the opponent color space to 
obtain color sharpening of digital images is a new method for color 
image sharpening. It considers human vision models and viewing 
conditions. The method outlined is tested and applied to several 
digital color images. The results are compared with other obtained 
by applying the Laplacian operator to the intensity channel only 
(keeping the chromatic components unchanged), or to the image 
components in other representations such as RGB.  

Method 
Let us consider an image I expressed into a device 

independent color space, such as CIE 1931 XYZ, that is linearly 
transformed into the opponent channels AC1C2 space [10]. Then, 
the image is spatially filtered, via convolution in the spatial 
domain, using filters that approximate the contrast sensitivity 
functions of the human visual system. In each opponent channel i, 
where i = 0,1,2{ } indicates the opponent channel {A,C1,C2}, the 

filter Fdi  is a linear combination of weighted Gaussian functions 
Gij  whose kernel sums to one. The kernel of each spatial filter is 

given by  

Fdi x,y( ) = wijGij x,y,
d ij
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where d  (pixels/degree of vision angle) indicates the scale, 

d ij 2  is the spread of the Gaussian functions and it represents 

the decreasing in sensitivity that occurs in the human vision system 
when the viewing distance increases. The values of the weights 
wij  and the spreads ij  expressed in degrees of visual angle that 

are used in S-CIELAB can be found in Refs. [10,13]. The 
components I di  of the spatially filtered image in the opponent 
color space are obtained by convolving the spatial filters Fdi  with 
the input image components I i  

I di x,y( ) = Fdi x,y( ) I i x,y( ) , (2) 

The filtered components in the opponent channels I di  are 
then back transformed into CIE XYZ space to give I d XYZ( )  that are 

transformed in turns into the CIELAB space, using standard 
equations, to give I d CIELAB( ) . Once the CIELAB coordinates are 

calculated for all the pixels, color differences between two filtered 
images obtained in this way can be computed on a pixel-by-pixel 
basis. 

When performing operations that involve second derivatives, 
such as edge detection or image sharpening, it is a common 
practice to smooth the image first by convolution with a Gaussian 
kernel of spread s to reduce noise before computing a second 
derivative or Laplacian. Taking into account the properties of 
derivative, Gaussian function and convolution, it is verified that 

2 G x,y,s( ) I x,y( )[ ] = 2G x,y,s( ) I x,y( ) , where the Laplacian 

of Gaussian is often just named LoG. A sharpened version ShI of a 
given image I can be obtained by computing 

ShI x,y( ) = I x,y( ) LoG I x,y( ) . (3) 

In this work, we propose to sharpen the components of the 
spatially filtered image in the color opponent space taking into 
consideration the linear combination of weighted Gaussian 
functions that compose the spatial filters Fdi  to build the LoG 
operator. Thus, we use 

LoG Fdi x,y( ){ } = wij
2Gij x,y,

d ij
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to calculate the sharpened image as it would be perceived 

ShIdi x,y( ) = I di (x,y) kLoG Fdi{ } I di x,y( ) . (5) 

Since the perceived sharpened image can be also expressed by 
ShIdi x,y( ) = Fdi x,y( ) ShI i x,y( ) , we derive that the sharpened 

image to display should be  

ShI i x,y( ) = I i x,y( ) kLoG Fdi{ } I i x,y( ) . (6) 

Parameter k has been introduced to control the sharpening 
depth. Note that the image to display, given by Eq. 6, has been 
sharpened taking into account that it is to be seen with viewing 
conditions given by d. 

For the sake of comparison, if we alternatively consider that 
the LoG operator is convolved by the image component I i  without 
spatial filtering in Eq. 5, we obtain  

ShIdi x,y( ) = I di x,y( ) kLoG Fdi{ } I i x,y( ) , (7) 

and, in such a case, the components of the corresponding displayed 
sharpened image would be 

ShI i x,y( ) = I i x,y( ) k 2I i x,y( ) , (8) 
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which corresponds to a conventional Laplacian based sharpening 
that does not smooth the image with any Gaussian function before 
sharpening. 

Results 
Figure 1 shows the image test. 

Figure 1. Test 

 

Figure 2 shows the test spatially filtered according to 

SCIELAB, with d=25, 50, 100 pixels per degree of visual angle 

and their reduced versions. Figure 3 shows an arrangement of 

spatially filtered images: on the left, the original images; in the 

centre, the sharpened images according the method proposed (Eqs. 

5,6), and on the right, the sharpened images according the simple 

Laplacian  (Eqs. 7,8). Parameter k was set to k=7.5 in all the 

sharpened  images  of  Figure 3.  The  advantages  of  applying  the  

method proposed are clear. Figure 4 shows the results of several 

experiments. It compares a set of images spatially filtered for d=25 

pixels/degree. The simple Laplacian operator applied onto the 

RGB image components gives bad results (b). The image 

sharpened according to the proposed method gives good results (c), 

but these results do not worsen significantly if the method is only 

applied to the achromatic channel A (d). 

 

 

Figure 2. Spatially filtered test at (a) d=25, (b) d=50, and (c) d=100 pixels per 

degree. Top file:filtered images displayed at the same scale. Bottom file: 

Reduced versions of the filtered images according d. 
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Figure 3. Comparison between the original image at different distances (left) and the sharpened images resulting from the method proposed (center) and 

the simple Laplacian operator (right) applied  to the color opponent image components 
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Figure 4. Comparison of several spatial filtered images with d=25 

pixels/degree: (a) Original image, (b) Image sharpened using the simple 

Laplacian operator onto the RGB image components, (c) image sharpened 

according the proposed method, and (d) sharpened imaged according the 

method but only applied to the achromatic channel A .  

Conclusions 
A method to sharpen digital colour images that takes into 

consideration viewing conditions and human vision models has 
been described. The method combines the Laplacian of Gaussian 
(LoG) operator with the spatial filters that approximate the contrast 
sensitivity functions of human visual systems. The sharpening 
operation is introduced in the opponent color space, following the 
scheme proposed in S-CIELAB. With this method we deduce the 
modification to introduce in the original image to have the 
spatially filtered image (that approaches the perceived image) 
LoG-sharpened for a given viewing conditions. The results 
obtained are good. When the sharpening operation is limited to the 
achromatic channel, the results are still good. An image sharpening 
based on just the Laplacian of the original is not sensitive to 
variations of viewing conditions, tends to increase noise, and the 
appearance deteriorates rather fast. 
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