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Abstract
Scale space filtering is a well known approach in image

segmentation. This approach determines precisely the thresh-
olds in order to produce the image segmentation by histogram
multi-thresholding. The main drawback of this approach is that
it produces a coarse segmentation because it does not take into
account the spatial arrangement of the pixels in the image and
so, requires a second stage in order to obtain a finer segmen-
tation. In this paper, we propose to associate a new criterion,
the compactness degree, with the scale space filter in order to
produce the segmentation by means of one single stage. For this
purpose, this criterion exploits the connectedness and the homo-
geneity properties of pixels.

Introduction
The color image segmentation techniques described in the

literature can be categorized into two main classes, depending
on the distribution of the pixel colors is analyzed either in the
image plane or in a color space [1]. In this paper, we propose an
approach which takes into account both connectedness properties
of the pixels in the image plane and homogeneity properties of
the pixels in the color space.

Among the techniques analyzing the pixel colors in a
color space, color image segmentation by 1D-histogram multi-
thresholding assumes that homogeneous regions in the image
plane give rise to peaks of the one-dimensional histogram of
each color component of a color space. 1D-histogram multi-
thresholding consists in determining the thresholds delimiting
these peaks in order to construct classes of pixels in the three-
dimensional color space and produce the image segmentation.

Many authors apply the scale space filter in order to de-
termine these thresholds [2, 3]. The scale space filter partitions
the histogram of each color component into intervals containing
only peaks and valleys. Since this partition depends on specific
criteria which do not take into account the spatial arrangement
of the pixels in the image, it produces a coarse segmentation of
the color image. Therefore, it is necessary to perform a spatial
analysis of the coarsely segmented image in order to obtain a fine
segmentation [4].

In this paper, we propose a new criterion associate with the
scale space filter to select the most significant peaks of a 1D-
histogram. Since this criterion takes simultaneously into account
the spatial arrangement of pixels in the image and the dispersion
of their levels, the color image can be segmented by one single
stage.

In the second section, we present the detection of peaks
of the 1D-histogram by the scale space filter. Then, we detail
the compactness degree which is the criterion used to select the

thresholds delimiting the most significant peaks. In the fourth
section, we detail the color image segmentation based on pixel
classification deduced from the so-determined thresholds. Ex-
periments on a synthetic color image and natural color images
are carried out in the last section.

Scale space filter
In the first part of this section, we introduce the scale space

filter. Then, we show how this filter can be applied to segment a
synthetic color image for the illustration purposes.

Principle
The scale space filter precisely detects the most significant

peaks and valleys of an histogram [5]. For this purpose, the
histogram is smoothed with different Gaussian functions. This
smoothed histogram is the result of a convolution between f (x),
the signal corresponding to the considered histogram (where x is
the color component level) and g(x,τ) a Gaussian kernel (where
τ is the standard deviation). The convolution, denoted ’∗’, be-
tween these two functions defines the function F(x,τ) which rep-
resents the smoothed histogram:

F(x,τ) =
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The analysis of the derivatives of an histogram allows to
determine the extrema which locate the peaks and the valleys.
So, for different values of the scale τ , the zero-crossings of the
derivatives of the smoothing histogram are detected and repre-
sented in the scale space (x,τ) in order to construct the finger-
prints. Here, we use the zero-crossings of the first derivative
∂F/∂x in order to determine local minima and local maxima of
the smoothed histogram. The local maxima define the centers
of the peaks and the local minima correspond to the centers of
valleys which are also the thresholds delimiting the peaks.

The fingerprints are analyzed in order to obtain an interval
tree of the scale space (x,τ) which represents all the possible
partitions of the histogram into peaks and valleys. Each interval
in the interval tree is called a node. In this paper, only peaks
are detected. So, each node in the scale space corresponds to
a peak of the histogram and is defined by a rectangle which is
delimited by a left threshold, a right threshold, a down scale and
an up scale. Let T k

x , be the right threshold of the kth node for
a given scale τ along the x color component. Thus, T k+1

x is the
right threshold of the (k+1)th node along the x color component
but also the left threshold of the kth node.



Example
In order to illustrate the scale space filter, we use the syn-

thetic color image of figure 1(a) which is composed of six re-
gions:

• a brown background,
• a yellow little square,
• an orange big square,
• a purple patch,
• two concentric green disks.

More precisely, we apply the scale space filter to the blue
component of this synthetic color image where the pixels are
only characterized by the blue levels.

(a) Synthetic color image (b) Blue component image

Figure 1. The synthetic color image and the blue component image.

Figure 2 represents the histogram of the blue component
image of figure 1(b).
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Figure 2. Histogram of the blue component.

This histogram shows three peaks which corresponding to
three pixel classes :

• the class of background and two squares pixels,
• the class of interior green disk pixels,
• the class of exterior green disk and purple patch pixels.

By smoothing the histogram of figure 2 with respect to dif-
ferent increasing values of τ (see equation (1)), we can detect the
local minima and the local maxima of the smoothed histogram at
different scales. The locations of these extrema at different scales
define chains of adjacent points which are the fingerprints in the
scale space. Figure 3 shows the fingerprints provided by the
multi-scale analysis of the blue component image of figure 1(b).
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Figure 3. Fingerprints corresponding to the blue histogram.

In this figure, x is the blue level of the image of figure 1(a)
and τ is the scale. The fingerprints labeled as green represent
the local maxima at different scales of the scale space, that is to
say the centers of the peaks in the histogram and the fingerprints
labeled as red represent the local minima at different scales of
the scale space, that is to say the centers of the valleys in the
histogram. Here, we analyze only the red fingerprints which
delimits the peaks of the histogram.

Then, by tracking each fingerprint from the top of the scale
space to the bottom, it is possible to determine the nodes. Each
node is define by a rectangle which is delimited by four sides :

• an up scale which is the scale from that, a new fingerprint
starts,

• a down scale which is the scale from that a fingerprint stops
and/or new fingerprints start,

• left and right thresholds which correspond to the locations
of the local minima for the up scale and the down scale.

In this figure, the nodes are represented in blue. When τ is too
high, the smoothed histogram presents only one peak which is
delimited by the interval [0;255]. The rectangle of the corre-
sponding node is then delimited by the values of this interval, a
down scale and an up scale which is defined as the value of the
down scale plus one. Figure 4 represents the nodes deduced from
the analysis of the fingerprints of figure 3.
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Figure 4. Determination of the nodes from the fingerprints.

Finally, the determined nodes define an interval tree in the
scale space which is represented in figure 5.
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Figure 5. Interval tree.

This figure shows that 7 nodes are reconstructed. For
τ ≤ 1.15, four rectangles or nodes are reconstructed meaning
that four peaks are detected. For 1.15 < τ ≤ 3.95, three peaks
are detected. For 3.95 < τ ≤ 24.2, two peaks are detected. For
τ > 24.2, only one peak is detected.

Then, the nodes corresponding to the most significant peaks
must be selected thanks to a specific criterion. These selected
nodes are called active nodes and are used to produce the seg-
mentation.

Authors generally consider that a node is active when its
height (the difference between its up scale and down scale) is
higher than the mean of its off-springs because it is the most
stable in the scale space [6]. Since this criterion does not take
into account the spatial arrangement of the corresponding pixels
in the image, its use produces a coarse segmentation. So, we

introduce a new criterion, the compactness degree which simul-
taneously measures the spatial arrangement of the pixels and the
dispersion of their levels [7].

Compactness degree
The compactness degree is defined as the product of a con-

nectedness degree and a homogeneity degree. The connectedness
degree of a subset of pixels is a measure of the spatial arrange-
ment of its pixels in the image plane. The homogeneity degree of
a subset of pixels reflects the dispersion of the levels representing
its pixels.

Let us denote the subset S[T k
x ,T k+1

x ] of pixels whose color
component levels x range between T k

x and T k+1
x in the consid-

ered image, that is to say which belong to the detected peak de-
limited by T k

x and T k+1
x . For the sake of simplicity, the subset

S[T k
x ,T k+1

x ] will be denoted hereafter S.

Connectedness degree
Let NS(P) be the subset of the 8 neighboring pixels of P

which belong to S. The connectedness between P and the subset
S, denoted γS(P), depends on the number of pixels which belong
to NS(P). It is defined as:

γS(P) =
Card{NS(P)}

8
, (2)

where the number 8 is a normalizing factor.
In order to define a connectedness measure of a nonempty

subset of pixels, we introduce the connectedness degree of a sub-
set S, denoted CD(S), which is defined as:

CD(S) =
∑

P∈S
γS(P)

Card{S} . (3)

The connectedness degree of an empty subset of pixels is set to
0. The connectedness degree CD(S) is the mean number, nor-
malized by 8, of neighbors of the pixels of S which belong also
to S. A low connectedness degree of a subset S, close to 0, means
that its pixels are sparsely scattered through the image, while a
high connectedness degree, close to 1, indicates that its pixels are
strongly connected in the image.

When a interval [T k
x ,T k+1

x ] is too large, it may contain dif-
ferent well separated peaks in the histogram which correspond to
different regions of different colors. The analysis of the connect-
edness degree is not sufficient for discriminating a subset which
corresponds to an actual region in the image from a subset which
corresponds to several regions with different colors. Hence, the
segmentation procedure has also to take into account the level
homogeneity properties of the subsets.

Homogeneity degree
So, we propose to use a new estimation of the homogeneity

properties of a subset S that is based on a measure of the disper-
sion of the levels representing its pixels. This measure, denoted
σ(S), is estimated as:

σ(S) =
1

Card{S} ·
√

∑
P∈S

(x(P)−M(S))2, (4)

where x(P) is the color component level of the pixel P and M(S)
is the mean level of the pixels which belong to S.

In order to determine if a subset corresponds to an actual
region, we propose to compare a global measure of the level dis-
persion of this subset with a local measure of the level dispersion
at each pixel which belongs to the subset.



For each pixel P of S, we determine the dispersion measure
σ(NS(P)) of the subset NS(P) constituted of the 8 neighbors of
P that belong to S. Let σlocal(S) be the local dispersion measure
of the subset S, defined as the mean of the dispersion measures
σ(NS(P)) estimated for the subsets NS(P) of all the pixels P of
S. This local dispersion measure of the subset S is expressed as:

σlocal(S) =
1

Card{S} · ∑P∈S
σ(NS(P)). (5)

When the local dispersion measure σlocal(S) of the subset S
tends to be close to its dispersion measure σ(S), there is a great
probability that the levels of the pixels of the subset S give rise
to a single peak, whereas when σlocal(S) tends to be lower than
σ(S), the levels could be split into several well separated peaks
along the 1D color-component histogram.

In order to compare σlocal(S) and σ(S), we define the ho-
mogeneity degree HD(S) of the subset S as:

{
HD(S) = σlocal(S)

σ(S) if σ(S) �= 0,

HD(S) = 1, otherwise.
(6)

The homogeneity degree HD(S) ranges from 0 when σlocal(S)
is equal to 0, to 1 when σlocal(S) is equal to σ(S). In order
to avoid values of HD(S) higher than 1, HD(S) is set to 1 when
σlocal(S) is higher than σ(S). When the levels of the pixels of the
considered subset give rise to one compact peak along the color
component, the homogeneity degree of the subset S is close to
1. On the other hand, when the levels of the pixels of the subset
give rise to well separated peaks along the color component, the
homogeneity degree of the subset S is low and close to 0.

Compactness degree
In order to combine connectedness and homogeneity con-

cepts, we define the compactness degree of a subset S, denoted
CHD(S), as the product of its connectedness degree and its ho-
mogeneity degree:

CHD(S) = CD(S) ·HD(S). (7)

This compactness degree reaches its highest value 1 if the con-
nectedness degree and the homogeneity degree are both equal to
1. A high compactness degree indicates that the pixels of the sub-
set are strongly connected in the image (connectedness degree
close to 1) and that the levels representing its pixels give rise to
one compact peak in the histogram (homogeneity degree close to
1). On the other hand, the spatial-color compactness degree of
a subset is close to 0 when either its connectedness degree or its
homogeneity degree is close to 0. A low compactness degree of
a subset means that its pixels are sparsely scattered through the
image or that the levels representing its pixels do not give rise to
a single compact peak in the histogram.

The compactness degree of each subset S[T k
x ,T k+1

x ] of pix-
els belonging to each interval [T k

x ,T k+1
x ] of the interval tree in

the scale space is then estimated. For example, the values of the
compactness degree for different partitions of the histogram of
figure 2 are given in table 1.

Table 1 shows that, when the scale τ decreases the number
N of intervals increases because a parent interval in the inter-
val tree gives rise to two child intervals at least for a specific
value of τ in the scale space. So, when two child intervals are
created, theirs compactness degrees are compared with those of
the parent interval. If the compactness degree of the child in-
tervals are all higher than the compactness degree of the parent

Number of Interval of τ
Intervals Interval [T k

B ,T k+1
B ]

N Compactness degree CHD(S[T k
B ,T k+1

B ])
τ > 24.2

1 [0;255]
0.197

3.95 < τ ≤ 24.2
2 [0;72] [72;255]

0.689 0.526
1.15 < τ ≤ 3.95

3 [0;72] [72;106] [106;255]
0.689 0.719 0.793

τ ≤ 1.15
4 [0;72] [72;81] [81;106] [106;255]

0.689 0 0.720 0.793
Measures of the compactness degrees
interval, the corresponding node can’t be selected as an active
node. The active nodes are selected as those from whose the
value of the compactness degree does not decrease. For exam-
ple, the value of the compactness degree for the interval [72;255]
(N = 2) is 0.526. This interval gives rise to the intervals [72;106]
and [106;255] (N = 3) for which the values of the compactness
degree are 0.719 and 0.793 respectively. These values are both
higher than 0.526. Here, the child intervals correspond to pixels
more connected in the image and to peaks more compact in the
histogram than those corresponding to the parent interval. So, the
node corresponding to the interval [72;255] can’t be selected as
an active node. In this example, the active nodes are those which
correspond to N = 3 because the value of the compactness degree
corresponding to the child interval [72;81] (N = 4) is lower than
those corresponding to the parent interval [0;72] (N = 3).

Image segmentation
In order to segment a color image by using the thresholds of

the three 1D color components, it is necessary to determine the
classes of pixels in the 3D color space. In this space, a class of
pixels can be defined by a parallelepipedal box. This box is de-
limited by thresholds of the selected active nodes which partition
each of the three 1D color histograms. Figure 6 shows the parti-
tion of the color space into NR×NG×NB parallelepipedal boxes
where NR, NG and NB are the number of active nodes along the
red, green and blue components respectively.
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Figure 6. Partition of the (R,G,B) color space into parallelepipedal boxes.

Thus, this partition defines NR×NG×NB possible classes



of pixels. For the image segmentation by pixel classification, it
is necessary to select only valid classes from this partition. The
valid classes are defined by the boxes in which fall into the color
vectors with the highest populations and which correspond to
compact subsets of pixels. The pixels whose color vectors fall
into these boxes constitute the NC classes of pixels.

Experimental results
In order to demonstrate the interest of our proposed ap-

proach, we detail the results obtained with the synthetic color
image of figure 1(a) in the first part of this section. Then, we
present different results obtained with natural benchmark color
images commonly used to compare the relevance of image seg-
mentation methods.

Synthetic image result
We propose to compare the segmentation result of the image

of figure 1(a) performed by the selection of the active nodes using
the classic criterion (the height) and those obtained when using
the compactness degree. Image 1(a) is constituted by six distinct
regions while the histogram of the blue component of this image
contains three significant peaks (see figure 2).

Figure 7(a) shows that only two active nodes, and so two
significant peaks are detected by using the classical criterion ap-
plied to the histogram of figure 2. For this case, we obtain
NR = 2, NG = 2 and NB = 2. So, there are only NR×NG×NB = 8
possible classes. Figure 7(b) shows the labeled pixels classified
to the four classes constructed thanks to the classification proce-
dure. For the illustration purposes, the label of each class does
not coincide with its color center. The color segmentation does
not succeed in separating the regions corresponding to the two
concentric green disks and the two squares (see image 7(b)). The
number of valid classes is only NC = 4.
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(a) Active nodes (hatched rect-
angles)

(b) Segmented image

Figure 7. Results obtained by the scale space filter using the classical

criterion.

Table 1 shows that the value of the compactness degrees
stop to increase when four actives nodes are considered. So,
three active nodes must be selected. For this case, we obtain
NR = 2, NG = 4 and NB = 3. So, there are NR×NG×NB = 16
possible classes. Figure 8(a) shows the three active nodes of the
blue image determined by the scale space filter integrating the
compactness degree. Figure 8(b) shows that the six classes of
pixels (NC = 6) are well constructed thanks to our segmentation
scheme. Only a few pixels representing the two green concen-
tric discs are misclassified since the clusters of their color points
strongly overlap in the (R,G,B) color space.
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(a) Active nodes (b) Segmented image

Figure 8. Results obtained by the scale space filter using the analysis of

the compactness degree.

Natural image results
In this part, we show some results obtained by our approach

applied to these three benchmark images:

• "Jelly beans" image (see figure 9(a)): this image represents
four kinds of colored objects on an uniform background.

• "Hand" image (see figure 10(a)): this image contains a hand
on a textured background and a blue ring around a finger.

• "House" image (see figure 11(a)): six main classes of pixels
can be determined in this image, namely the sky, the wall,
the window, the shadows, the roof and the gutters.

By applying our approach to these images, we obtain the
results of figures 9(b), 10(b) and 11(b). The pixels assigned to
the same class are labeled with a false color corresponding to
this class.

The obtained results on the "Jelly beans" image are remark-
able because the five classes of pixels are precisely detected. For
this image, we obtain NR = 2, NG = 2, NB = 2 and NC = 5.

(a) Original image (b) Labeled image by our approach

Figure 9. "Jelly beans" image.

In the "hand" image, three classes of pixels are principally
reconstructed: the hand, the background though it is composed
of textured colors and the ring. Nevertheless, all the pixels rep-
resenting the ring are not assigned to the same class because the
ring is compounded by two main colors. A fourth class of few
pixels corresponding to highlights is also reconstructed. For this
image, we obtain NR = 2, NG = 1, NB = 2 and NC = 4.

The obtained results on the "Hand" image are satisfying be-
cause all the classes of pixels are correctly reconstructed. Few
pixels are not assigned to any class because their colors fall into
boxes of the color space which are not considered as classes.
These pixels mainly correspond to edges of objects. For this im-
age, we obtain NR = 3, NG = 3, NB = 2 and NC = 6.



(a) Original image (b) Labeled image by our approach

Figure 10. "Hand" image.

(a) Original image (b) Labeled image by our approach

Figure 11. "House" image.

Conclusion
The first results obtained with the proposed approach in this

paper are very encouraging. Indeed the tested images are cor-
rectly segmented while only the (R,G,B) space is used. It would
be interesting to apply our approach with different color spaces
to study its behavior and more precisely the relationship between
the compactness degree and the color space. Presently, we work
on the automatic selection of the most adapted color space for
a problem of image segmentation [8] which exploits the scale
space filter based on the compactness degree.

Presently, the value of the compactness degree is tracked
scale by scale in the interval tree. But, it would be interesting to
analyze the compactness degree on each branch of the interval
tree independently and to study the evolution of this criterion in
order to select the number of active nodes.

Another improving point is to integrate this approach to an
iterative segmentation algorithm in order to extract pixel classes
step by step and to determine the most adapted color space to
construct each class at each step [9].
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