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Abstract 

The primary goal of a colour characterization model is to 
establish a mapping from digital input values di (i=R,G,B) 
to tristimulus values such as XYZ. A good characterization 
model should be fast, use a small amount of data, and 
allow for backward mapping from tristimulus to di. This 
paper demonstrates implementations of three different 
colour characterization models, each tested on seven 
display devices.  The characterization models implemented 
in this study are a 3D LUT, a linear model,2 and the 
masking model introduced by Tamura et al. in 2002.6  The 
devices include two CRT Monitors, three LCD Monitors, 
and two LCD Projectors.   

Several characteristics of the display devices are 
presented in relation to data collection and characterization 
modeling.  These include the long phosphor stabilization 
time on CRT monitors and the shifting chromaticity of 
mixed colours on LCD displays.   

The results of this study indicate that a simple linear 
model is the most effective for all devices used in the 
study, despite the common belief that it is sometimes 
inappropriate for LCD monitors.  A simple extension to 
the linear model is presented, and it is demonstrated that 
this extension improves white prediction without causing 
significant errors for other colours. 

Introduction 

Accurate colour management across multiple displays is an 
important problem, and will become more important in 
years to come.  Users are increasingly relying on digital 
displays for creating, viewing and presenting colour media.  
Users with multi-panel displays would like to see colour 
consistency across the displays, while conference speakers 
would like an accurate prediction of what their slides will 
look like before they enter the auditorium. 

The act of predicting colours across multiple display 
devices requires implementation of several concepts, 
including device characterization, gamut mapping, and 
perceptual models.  This paper is focused on the concept of 
device characterization – establishing a mapping from 
digital input values di (i=R,G,B) to tristimulus values such 
as XYZ.  A good characterization model should be fast, 
use a small amount of data, and allow for backward 
mapping from tristimulus to di.   

There are a several well-known characterization 
models that support both forward and backward mapping, 
three of which were implemented in this experiment: 3D 

Lookup Table (LUT), linear model and masking model. 
The 3D LUT method uses a pair of three-dimensional 
tables to associate a tristimulus triplet with every RGB 
combination, and vice versa.  This method is simple to 
understand, but difficult and cumbersome to implement. 

The term linear model refers to the group of models 
(GOG, S-Curve, and Polynomial model) that estimate 
tristimulus response with a linear combination of pure 
phosphor output. These models each start by linearizing 
the digital input response curves with the specific 
nonlinear function from which they draw their names. The 
linear model has been widely used for CRT monitors, but 
has been criticized for its assumption of channel 
independence, which may not apply on LCD displays. 

The third model implemented in this study was the 
masking model introduced by Tamura et al. in 2002.6  This 
model applies the concept of Under Colour Removal 
(UCR) to mask inputs from 3-dimentional RGB space to 7-
dimensional RGBCMYK space, then linearizes inputs and 
combines outputs as was done in the linear model. 

This paper will discuss the implementation, benefits, 
and pitfalls of each method with respect to use on CRT 
and LCD display devices. In general, prediction errors will 
be quantified terms of ∆E, as measured in 1994 CIE La*b* 
colour space. The first section of the paper deals with data 
collection. The next section reviews the characteristics of 
devices used in the study. Section 3 discusses 
implementation details and considerations for each of the 
three characterization models, and section 4 reviews the 
results of the study and proposes improvements. 

Data Collection 

All data used in this study was collected using a Photo 
Research SpectraScan 650 Spectrometer in a dark room 
with the spectrometer at a fixed distance, perpendicular to 
the center of the display surface.  Before beginning each 
test, the monitor settings were re-set to the factory default 
and the brightness was adjusted using a gray-scale 
calibration pattern until all shades of gray were visible. 

The data collection was performed automatically in 
large randomized test suites.  We found that it is important 
to test the repeatability of the spectrometer with respect to 
each monitor and ensure that the test plan is sufficient to 
smooth out significant measurement errors.  As a result, 
each RGB sample used in this study was composed of a 
total of 25 measurements, taken in 5 randomly scheduled 
bursts of 5 measurements each.   
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Figure 1. Percentage of the steady state luminosity for white on 
the vertical-axis vs. the number of seconds since black was 
displayed on the horizontal-axis.  

  
 
Figure 1 shows the percentage of steady state 

luminosity for white vs. the number of seconds since a 
colour change from black. In this paper, luminosity will be 
defined as the L value in CIELAB94 space. Note that the 
LCD-based devices often reach steady state within less the 
first second, while the CRT devices take longer. The 
amount of time required for the CRT devices was 
somewhat surprising – up to 10 seconds in CRT2. The 
spike that occurs on CRT2 right after the colour change is 
unexpected as well. However, the implication for testing is 
straightforward - measurement delay after a colour change 
must be several seconds longer for CRT devices. 

Another important setting related to data consistency 
is spectrometer integration time.  In general, CRT monitors 
require a longer integration time because the display 
flashes with each beam scan.  Figure 2 shows the result of 
an integration time test on CRT1.  

Observe that shorter lower integration times result in 
more unstable measurements.  The monitor refresh rate 
used in this experiment is 75 Hz, which equates to 13.3 ms 
per scan.  Therefore, any integration time t will experience 
either t/13.3 or t/13.3 scans depending on when the 
measurement window starts. For example, if the 
integration time is 100ms, then measurements will one, 
either experience seven or eight scans, leading to high 
variation. Conversely, a time of 400 ms will almost always 
lead to 30 scans (400 / 13.33 = 30.00). 

 

 

Figure 2. Measurement Error (Log scale) vs Integration Time in 
milliseconds measured on four grayscale colours on CRT1 

 
 
The measurements in this study were taken with a 

default integration time of 400ms, which was doubled 
whenever a “low light” error was detected and halved 
when a “too much light” error was detected.  Although this 
technique resulted in acceptable error levels, an 
improvement would be to use only integration times are 
exact multiples of 13.3. 

Three suites of data were collected for each monitor:  
a 10x10x10 grid of evenly spaced RGB values covering 
the entire 3D space, a similar 8x8x8 grid used for testing 
and verification, and a “101x7” data set made up of 101 
evenly spaced measurements for each primary RGB and 
secondary CMYK channel with the other inputs set to 
zero. 

Device Characteristics 

Seven devices were tested – two CRT monitors, three LCD 
monitors, and two LCD projectors. A summary of these 
devices is given in Table 1.   

Table 1. Device Summary 
Name Description 
CRT1 Samsung Syncmaster 900NF 
CRT2 NEC Accusync 95F 
LCD1 IBM 9495 
LCD2 NEC 1700V 
LCD3 Samsung 171N 
PR1 Proxima LCD Desktop Projector 9250  
PR2 Proxima LCD Ultralight LX 

 
 
A common issue in device characterization is channel 

interaction.  In this study, channel interaction is calculated 
as follows, where v represents the input value for the 
channel in question, a and b are constant values for the 
other two channels, and L(r,g,b) represents the measured 
luminosity for a given digital input. 

 ( ) ( )
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This equation returns zero when there is no channel 
interaction. The equations for CIGREEN and CIBLUE are 
similar.   

 

 

Figure 3. Channel Interaction Interaction.  The horizontal axis 
represents the input value v ranging from 0 to 255 and the 
vertical axis represents the value of the Channel Interaction 
metric. CICOLOR(v,a,b). The black line shows a=b=255 and 
dashed lines show a=0,b=255 and a=255,b=0 

 
 It is commonly expected that LCD devices will exhibit 
channel interaction and CRT devices will not.  However, 
the two CRT monitors exhibited more significant 
interaction problems than three of the five LCD devices, as 
shown in Figure 3. 

The nature of the interaction is surprising as well.  
Observe that for CRT1, interactions with one other 
phosphor tend to increase luminosity output while 
interactions with both other phosphors tend to decrease 
luminosity output.  Interactions on other devices were 
either consistently additive or subtractive.   

Another potential issue with LCD monitors is 
chromaticity shift.6 This study found that chromaticity 
shift of pure phosphor colours was insignificant. However, 

chromaticity shift of combined colours (CMYK) was 
notable on all LCD devices (Figure 4).  

This effect is caused by the dissimilarity of shape 
between the strongly s-shaped B response curves and the 
more gamma-shaped R and G curves.  An example of this 
shape difference is given in Figure 5. 

 

 

Figure 4. Chromaticity Shift Diagrams in xy space, with  
x=X/(X+Y+Z) on the horizontal axis and y=Y/(X+Y+Z) on the 
vertical axis. 

 

  

Figure 5. X response shape differences between channels for 
PR1 
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Implementation Details 

All characterization methods start with black level flare 
correction, in which the measured XYZ value of black for 
the device is subtracted from the measured tristimulus 
value of each colour.  This ensures that all devices have a 
common black point of (0,0,0) in XYZ space.2 The 
remaining steps for each characterization are described 
below.   

3D LUT Model 
The 3D LUT method was implemented with the 

intention of providing a golden standard against which to 
evaluate the other two models, but is expensive both 
computationally and storage-wise (10 MB for a storage 
table) and is not well suited for reverse mapping.  To 
create the forward lookup table, the 10x10x10 training data 
was interpolated using 3D linear interpolation to fill a 
52x52x52 lookup table indexed by RGB values spaced 5 
units apart. At look-up time, 3D spline interpolation is 
used to look up intermediate values. 

Inverting the lookup to index by XYZ is non trivial – 
it requires interpolation of a sparse 3D data set; a task that 
is a field of research in its own right.5  The reverse lookup 
was performed via tetrahedral interpolation on the original 
10x10x10 data set.  Tetrahedral Interpolation was chosen 
over a number of other methods primarily for its speed and 
ability to handle sparse, irregularly spaced data.  However, 
any values that fall outside the convex hull of the measured 
gamut will return errors.  This is particularly problematic 
for the LCD monitors, which have slightly convex gamut 
faces.  In order to prevent edge values from returning 
invalid data, the entire lookup table was expanded outward 
by 1% from the gamut centroid. 

Linear Model 
The linear model is a two-stage characterization 

process.  In the first step, the raw inputs di (i=1, 2, 3 for R, 
G, B) are linearized using a fitted function Ci(di) for each 
channel.  Linear regression is then used to determine the 
slope Mij between each linearized input Ci(di) and the 
respective XYZ outputs where j=(1, 2, 3) for (X, Y, Z).  
The second stage applies matrix M to calculate estimated 
XYZ values. 
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The linearization functions in this implementation 
avoid any shape predisposition by using a LUT that is 
calculated as follows.  The 10 measured response values 
for each input channel i are interpolated to obtain three 
output vectors X(di), Y(di) and Z(di) in 256-dimensional 
space.  Principal component analysis is then used to find 
the single vector Ci(di) that best approximates all three 
output vectors.  The following equation calculates Ci(di) 
where PCAi represents the weighting vector obtained from 
principal component analysis. 

 
[ ] [ ]iiiiii PCAdZdYdXdC *)()()()( =

     (3) 

In order to allow for backward mapping, two 
conditions are required: the linearization function must be 
monotonic and the matrix M must be invertible. Inversion 
is always possible because none of the input channels are 
linearly dependent. However, the monotonicity 
requirement is a real risk with LCD displays, where the 
response curves sometimes level out or even decline for 
high input values (Figure 6). It is therefore necessary to 
modify the linearization function to ensure monotonicity.  
Note that this modification, although necessary, serves to 
reduce the accuracy of the linearization and increases the 
overall error of the characterization.   

When creating the lookup table, a decision must be 
made regarding the size of the training data set.  Figure 7 
shows the relationship between training data size and 
forward mapping error, measured in ∆E. In general, a 
larger training set is better, but the benefit tapers off after 
about 10 data points.  For the results section of this paper, 
a training data set with 101 points was used to ensure 
minimal error introduced by training data size. 

 

  

Figure 6. Smoothing correction for non-monotonicity in the Z-
response curve of the B channel for PR1 

 

 

Figure 7. Mapping Error vs Training Data Size 

 
The primary criticism of the linear model is that it 

assumes channel independence.  As we have seen above, 
this is not always a valid assumption – even for CRT 
monitors.  When there is channel interaction, the predicted 
output for colours that use more than one phosphor may 
not be accurate. This is especially true for white, which 
uses the maximum value of all three phosphors. Our 
observations suggest that this problem is not very 
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noticeable on natural images where the eye is accustomed 
to correcting for scene lighting. However it becomes 
significant on computer-generated images such as 
presentation slides or charts where there are large regions 
of pure white with no expected ambient lighting.  In this 
case, the eye is less forgiving.   

One solution is to perform a white-point correction to 
ensure that the predicted white exactly matches the 
measured white.  A simple approach is to apply a diagonal 
transform to the slope matrix M based on the measured 
and predicted values of pure white. The following formula 
shows the conversion, where XMEASURED is the measured X 
value for white and XPREDICTED is the predicted X value for 
white using the original slope matrix. 
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This modification to the slope matrix ensures that 
predicted white is correct, but slightly shifts all of the other 
colours in a non-uniform manner, which could potentially 
increase the overall error.  This model will be referred to as 
“Linear+” in this paper, and is useful when displaying 
computer-generated images where white is a major colour.  
Note that a similar correction can be performed using an 
alternate tristimulus space, such as LMS.  In our study, we 
found that using either XYZ or LMS intermediate space 
returns the same average increase in forward error (±0.05 
∆E). 

Further improvement may be possible using a 
technique similar to that presented by Finlayson and Drew 
in Ref. [3], where a modified least-squares procedure is 
used to determine the matrix M. By constraining the 
prediction error for white to zero, a matrix can be selected 
that reduces overall error while ensuring an accurate white 
value.  It is interesting to note that their approach achieved 
good results even without first linearizing the inputs. 

    

Masking Model 
The masking model6 attempts to avoid problems 

related to channel interaction with a technique similar to 
UCR in printing.  The original digital input di is converted 
to masked input mi (i=1,2,3,4,5,6,7 for RGBCMYK), and 
the masked values are combined in a manner similar to 
what was done in the linear model.  The masking operation 
assigns values to three elements of m – the primary colour 
(index p), the secondary colour (index s), and the gray 
colour (index 7), and sets all of the remaining elements of 
m to zero, as follows.  
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The result of these formulas is to set p to the index of 
the maximum primary colour (R, G, or B), and mp to the 
input value for that colour.  It assigns s to the index of the 
mixed colour (C, M, or Y) that does not contain the 
minimum colour, and assigns ms to the median of the 
original values.  Finally, it sets the gray value m7 to the 
minimum of the three original inputs.  For example, if the 
original inputs are RGB=(200,100,50), the primary colour 
will be red, with a value of 200.  The secondary colour will 
be yellow (which does not contain blue) with a value of 
100, and the gray (under) colour will have a value of 50.  
The masked input array becomes m=[200,0,0,100,0,0,50].  

Once the inputs have been converted into masked 
values mi, a linearization function Ci(mi) for each input 
channel i is determined using the method described above 
for the linear model. The slope matrix Mij for each input 
channel i and output channel j is calculated as using PCA 
and linear regression, also as described for the linear 
model.  Finally, let the vector Pi represent the column of 
matrix M that contains the X, Y, and Z slopes for input 
channel i.  The transformation from masked input to XYZ 
output can then be written as follows: 
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The inverse mapping from XYZ to RGB is less 
obvious, and requires knowledge of the primary and 
secondary colour indices p and s.  There is no way to know 
these values, so all six possible (p, s) combinations are 
tested (RM, RY, GC, GY, BC, BM) and any combination 
that satisfies the following conditions will yield the correct 
result. 

 255 ≥  mp ≥  ms ≥ m7 ≥ 0        (7) 

Results 

This study calculated values of forward error ∆EFWD, round 
trip error ∆ETRIP, and backward error ∆EBWD for 512 
colours in an 8x8x8 evenly spaced grid of RGB inputs.  
For each colour, we find three vertices in CIE L*a*b* 
space: the measured value for the colour vM, the predicted 
value vP, and a round-trip value vRT found by mapping 
backward and forward again from vP.  These points form a 
triangle with edges representing the forward, round-trip 
and backward error vectors.  ∆EFWD is the distance from vM 
to vP, ∆ETRIP is the distance from vP to vRT, and ∆EBWD is 
the distance from vRT back to vM. 

CGIV 2004: The Second European Conference on Colour Graphics, Imaging and Vision

560



 

 

Table 2. Mean Forward Errors (∆Eab) 
 LUT Lin Lin+ Mask 

CRT1 0.8 2.4 2.2 2.6 
CRT2 0.5 1.7 2.7 1.5 
LCD1 0.8 0.9 0.9 3.5 
LCD2 0.9 3.1 3.2 3.3 
LCD3 1.0 3.7 3.7 4.2 
PR1 1.4 1.7 1.9 5.6 
PR2 0.3 2.1 2.6 7.3 
Average 0.8 2.2 2.5 4.0 

Table 3. Mean Backward Errors (∆E) 
 LUT Lin Lin+ Mask 

CRT1 1.5 2.4 2.2 2.6 
CRT2 1.6 1.7 2.7 1.5 
LCD1 1.8 0.9 0.9 3.5 
LCD2 2.4 3.1 3.2 3.3 
LCD3 2.7 3.7 3.7 4.2 
PR1 2.8 1.7 1.9 5.6 
PR2 1.9 2.1 2.6 7.3 
Average 2.1 2.2 2.5 4.0 

 
 
With respect to forward or backward error, we see that 

the 3D LUT is the most accurate, followed by the linear, 
Linear+ and Masking models (Table 2, Table 3). A 
comparison of backward error distributions (Figure 8) 
shows that the linear model had tightest distribution for 
each device, while the distribution for 3D LUT tended to 
have a number of high-error outliers.  The cause of these 
outliers becomes apparent when the error values are 
plotted by chromaticity. Figure 9 shows the chromaticity 
coordinates for points that are greater than half the 
maximum error for each model/device combination. 
Observe that the largest errors for the 3D LUT are often on 
or near the gamut boundary, which is where the tetrahedral 
interpolation tends to fall apart.   

For the linear model, the highest errors are fairly well 
distributed across the chromaticity space for all devices 
except the projectors, which have a distinct problem in the 
blue region.  This is most likely due to the non-monoticity 
exhibited by the projectors in the blue output curves.  As 
mentioned in the implementation section, the monotonicity 
correction stage is a potential source of error for all 
devices. However, it appears to be adding very little error 
for devices that do not have a monotonicity problem (Table 
4).  The most notable increase in error was seen with the 
Projector 1, which also had the most trouble with non-
monotonicity.  

 

 

Figure 8. Backward Error distribution for each characterization 
model on each device. ∆E error value is shown on the horizontal 
axis and histogram counts are shown on the vertical axis 

Table 4. Percent Increase in Forward ∆E Error Due to 
Monotonicity Correction 

 Uncorrected Corrected % Increase 

CRT1 2.4 2.4 0.0% 

CRT2 1.7 1.7 0.0% 

LCD1 0.9 0.9 -0.7% 

LCD2 3.1 3.1 0.0% 

LCD3 3.5 3.7 4.7% 

PR1 1.5 1.7 12.4% 

PR2 2.1 2.1 -0.8% 

Average 2.2 2.2 2.3% 

 

 

 

Figure 9. Backward Error vs Chromaticity. The horizontal and 
vertical axes are X/(X+Y+Z) and Y/(X+Y+Z) respectively. 
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The results in Table 2 and Table 3 show that the 
average error for the Linear+ model was nearly the same as 
that for the standard linear model.  Recall that the goal of 
Linear+ is to guarantee that the predicted white is correct, 
at the possible expense of other color predictions. This 
means that “perfect” white can be achieved without much 
degradation in other colors.  Informal visual comparisons 
indicate that this model is the best one to use for computer-
generated media. 

The masking model was expected to out-perform the 
linear model whenever there was an issue with channel 
interaction.  However, the model’s best performance (on 
CRT2) is only slightly better than that of the linear model.  
The primary pitfall of this model is that it depends on 
constant chromaticity “combined primaries” (CMYK).  It 
is clear from Figure 4 that this assumption is incorrect for 
the LCD monitors and projectors.   

 

Figure 10. Linearization Failure for the Black Channel on PR1 

 
 
The chromaticity shift caused by dissimilarity in the 

shapes of the R, G and B response curves causes the input 
the linearization step to fail.  Figure 10 shows an example 
of an unsuccessful linearization for the black channel for 
PR1 in the masking model – note that none of the lines are 
straight. This explains why the performance of the 
masking model was better for CRT monitors than any of 
the other devices – the CRTs do not have the shifting 
chromaticity problem.  

With respect to efficiency, the linear model is the top 
performer.  The linear model is slightly faster than the 
masking model and nearly 20 times faster than the 3D 
LUT.  The linear model also requires less than half the 
storage space of the masking model, and less than 1/300th 
the storage space required for 3D LUT (Table 5). 

 

Table 5. Experimental Running Time and Storage 
Space as multiples of linear model Usage 

 Time Space 
Linear  1.0 1.0 

Masking  1.2 2.3 
3D LUT 17.0 333.4 

Conclusion 

Several display characterization models were implemented 
in this paper: a 3D LUT, a linear model, an extension to 
the linear model, and a masking model. These 
characterization models were each tested on seven devices: 
two CRT Monitors, three LCD monitors and two LCD 
projectors.   

Several general observations were made with respect 
to collecting characterization data.  We found that the 
phosphor stabilization time on the CRT monitors was 
much longer than expected, and can take up to 10 seconds.  
In practice, a delay time of 2500 ms between a colour 
change and subsequent measurement resulted in acceptable 
error levels.  With respect to integration time, we propose 
that measurements on CRT monitors be taken with 
integration times that are multiples of the display scan rate. 
In addition, it was shown that a training set of 10 points 
data per axis is sufficient for the linear model (Figure 7). 

Although recent papers have indicated that the linear 
model is not applicable to LCD monitors,6 it worked well 
for the LCD devices tested in this experiment.  
Furthermore, channel interaction was pronounced on the 
CRT monitors than on several of the LCD displays.  The 
primary issue with the LCD displays was the fact that the 
response curves for the three input channels were 
dissimilar, leading to chromaticity shift of combined 
colours (CMYK).  This problem affected the masking 
model but not the linear model. 

Despite these issues, all three models yielded mapping 
errors of less than 15 ∆E.  The 3D LUT model was slightly 
more accurate than the other models, but it is too 
cumbersome for actual use. The linear model was the most 
efficient, with accuracy nearly as good as to the 3D LUT.   

The primary drawback of the linear model is that it 
can be adversely affected by channel interaction.  A slight 
modification to the linear model is presented in the 
Linear+ model that uses a simple white-point correction 
technique to ensure correct prediction of white.  Our 
results indicate the Linear+ model is able to guarantee 
white-point accuracy with minimal degradation for other 
colours. 
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