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Abstract

Color correction describes the transformation process be-
tween device RGB values and CIEXYZ resp. CIELab val-
ues. In every metamer color reproduction system this is
the first color transformation after image acquisition. In
general, this mapping is not unique since the spectral sen-
sitivities of most of the devices do not satisfy the Luther
condition and because the acquisition and viewing light
sources have a different power spectrum.
Therefore, there exists a set of colors with different re-
flectance spectra which result in the same device RGB re-
sponse (device metamerism), but have different color ap-
pearances for an observer under the viewing light source.
We present a novel method to determine this metamere
subspace (which depends on the device response) in the
viewing CIELab space by calculating a Metamer Bound-
ary Descriptor (MBD) matrix.
This MBD describes the metamer subspace approximately
by storing boundary points of the set in every entry. By
calculating the center of gravity of this MBD we get a
good color choice in the sense of a small mean error. To
calculate the entries of the MBD we use a priori knowl-
edge about the physics of natural reflectance spectra and
a linear programming technique. This method improves
the performance of target- and regression-based methods
especially in the area of saturated colors. Simulation ex-
periments including a comparison with existing methods
are given in the text.

Introduction

In every metamer color reproduction system color cor-
rection, i. e. the mapping from device RGB values to
CIEXYZ or CIELab colors respectively, is the first color
transformation after image acquisition.
There exist two different classes of methods for color cor-
rection in linear acquisition systems: target based methods
and model based methods. Target based methods use a
set of sample CIEXYZ / CIELab colors with correspond-
ing acquired RGB values to determine an approximation
of the color correction transformation. The best known
method is the linear mapping between the RGB values and
CIEXYZ colors. Assuming that the RGB values depend

linearly on the CIEXYZ colors this transformation has to
be optimal. This method determines a transformation 3×3
matrix A, using linear regression of the target colors.

A · (R, G, B)T = (X, Y, Z)T → (L∗, a∗, b∗)T (1)

As a result of different acquisition and viewing light sources
and non-compliance of the Luther condition by the spec-
tral sensitivities of the image acquisition system the map-
ping is generally not linear and the method results in high
∆E errors.
An improvement of this method is the use of polynomial
mapping of order n > 1

 PX(R, G, B)

PY (R, G, B)
PZ(R, G, B)


 = (X, Y, Z)T → (L∗, a∗, b∗)T (2)

with

Px(R, G, B) =
∑

i, j, k = 0,
i + j + k <= n

ax
i,j,kRiGjBk (3)

for x = X, Y, Z . The coefficients can be calculated us-
ing multidimensional polynomial regression (MPR) of the
target colors.
In the previous methods the regression was calculated in
the intensity linear CIEXYZ color space. This minimizes
the root mean square error between the mapped colors
and the corresponding target colors, but our color differ-
ence formulas work in the CIELab color space. Therefore,
an improvement in respect of small ∆E values should be
achieved, if the regression can be performed directly in the
CIELab color space.
Hardeberg [2] transformed the R, G, B values at first with
a nonlinear function g(x) = x1/3 to achieve a nearly lin-
ear relationship between the g(R), g(G), g(B) values and
the CIELab colors. This leads to a better performance
of the subsequent multidimensional polynomial regression
and smaller ∆E errors. The reason for choosing g(x) =
x1/3 is the transformation formula between CIEXYZ and
CIELab. We call the method ”multidimensional polyno-
mial regression into CIELab based on Hardeberg”
(MPRLabH).
König [3] transformed the R, G, B values as in equation
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(1), but performed a multidimensional polynomial regres-
sion to the real target CIELab colors afterwards. We call
this method ”multidimensional polynomial regression into
CIELab based on König” (MPRLabK).
If we consider noisy systems the regression based meth-
ods result in high error rates. König [3] proposed a new
matrix based method as in equation (1), by calculating the
coefficients using linear programming. Goal of the calcu-
lation are matrix entries, which have nearly the same size
but still cause small errors. The resulting matrix does not
amplify the noise as much as regression based matrices.
We call the method ”robust matrix” method (RM).
The other class of color correction methods are the model
based methods. These methods use the mathematical model
of the image acquisition system (see equation (4)) to re-
construct the CIELab colors from the RGB values. As
mentioned before the acquisition and viewing light can
differ and spectral sensitivities of the image acquisition
system might not satisfy the Luther condition (i. e. the
linear dependency to the sensitivities of the standard ob-
server) (see [4]). Therefore, the reconstruction is generally
not unique. There exists a set of colors with different re-
flectance spectra which result in the same device RGB re-
sponse (device metamerism), but have different color ap-
pearances for an observer under the viewing light source.
The method of reconstructing a reflexion spectrum from a
given RGB response and calculating the appropriate CIE
XYZ color is not recommended, because the set of pos-
sible spectra, which lead to the given sensor response, is
generally too extensive to achieve satisfying results.
Finlayson and Morovic [1] attempted to characterize the
metamer subspace of possible color spectra which result in
the given sensor response in the viewing CIEXYZ space.
They used a linear programming technique to find the small-
est cube in which the metamer subspace is located and
chose the center of this cube for color correction (Linear
Programming Centre of Cube - LPCC). They also pro-
posed another technique to determine the desired color by
sampling the mentioned cube (as a region of interest) of
feasible points and take the centroid of the feasible set.
A disadvantage of this method is that the characterization
is performed in the intensity linear CIEXYZ color space
and not in the CIELab space, where the error metrics are
defined. Furthermore, the description of the metamer sub-
space using an enveloping cube is a very raw characteri-
zation.
The following text describes a method for characterizing
the metamer subspace in the nearly perceptual uniform
CIELab color space by calculating a metamer boundary
descriptor matrix. The center of gravity of this matrix is
an approximation of the color with the smallest ∆E dis-
tance to all other colors in the metamer subspace. This
color is the optimal color choice for color correction in
the sense of small mean error.

The Metamer Subspace

Supposing a linear acquisition system with the following
relationship between the acquisition illuminant La, the sen-
sitivities sX ,X = R, G, B, the reflection spectrum r, and
the sensor response X = R, G, B, with additive noise ε
and the visible wavelength interval Λ = [400nm, 700nm]
is

X =
∫

Λ

sX (λ)La(λ)r(λ)dλ + ε (4)

In our work the system sensitivities sX , the acquisition
light La and the sensor response X = R, G, B are well-
known. The corresponding discrete formulation by sam-
pling the spectra in N equal wavelength intervals is

c = Ωar + ε (5)

with c = (R, G, B)T , r = (r(λ1), . . . , r(λN ))T and the
acquisition lighting matrix

Ωa =


 sR(λ1)La(λ1) · · · sR(λN )La(λN )

sG(λ1)La(λ1) · · · sG(λN )La(λN )
sB(λ1)La(λ1) · · · sB(λN )La(λN )




The accruement of an observer’s tristimulus value vr ∈
CIEXYZ by the same reflection spectrum r under the view-
ing illuminant Lv is analogous. We only present the dis-
crete form here

vr = Ωvr (6)

with the observer lighting matrix depending on the CIE
color matching functions x̄, ȳ, z̄

Ωv =


 x̄(λ1)Lv(λ1) · · · x̄(λN )Lv(λN )

ȳ(λ1)Lv(λ1) · · · ȳ(λN )Lv(λN )
z̄(λ1)Lv(λ1) · · · z̄(λN )Lv(λN )




A general solution of (5) for the reflection spectrum r is

r = Ω�
a (c − ε) + Kern(Ωa) (7)

where Ω�
a is the pseudo-inverse matrix of Ωa and Kern(Ωa) :=

{w | Ωaw = 0}. If we collect a basis w1, . . . , wK of
Kern(Ωa) into a matrix W := (w1, . . . , wK) we can rewrite
(7) as follows

r = Ω�
a (c − ε) + Wu, ∀u ∈ R

K (8)

This algebraic solution has to be restricted by physical
conditions like the positivity, boundness and smoothness
of r. So not all u ∈ R

K are physically useful. We denote
by U ⊂ R

K the subset that fulfils these constraints in (8).
If we insert (8) in (6) we get the metamer set MXY Z of
possible tristimuli in the CIEXYZ color space

M c
XY Z = {ΩvΩ�

a (c − ε) + ΩvWu | u ∈ U} (9)
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Our error metrics (color difference formulas) are defined
in the CIELab color space, so we have to map the elements
of MXY Z from the intensity linear CIEXYZ color space
into the nearly perceptual uniform CIELab space. We de-
note this transformation with L : CIEXYZ �→ CIELab
and define our metamer subspace by

M c
Lab = L(M c

XY Z) (10)

In the next section we will present a method which char-
acterizes this subspace by a metamer boundary descriptor.

The Metamer Boundary Descriptor

The Metamer Boundary Descriptor (MBD) is a n×m ma-
trix which stores a boundary point of the metamer sub-
space M c

Lab in every entry. Each row contains m contour
points of the set for a fixed L∗ value. The boundary points
will be calculated in the CIEXYZ space using the follow-
ing linear programming (LP) problem, which sampled the
metamer subspace along a straight line q + λv (figure 1)

−λ = min (11)

with the linear constraints

r ≥ 0 (12)

r ≤ 1 (13)

Hr ≤ p (14)

−Hr ≤ p (15)

Ωar = c + ε (16)

Ωvr = vr (17)

g + λv = vr (18)

λ ≥ 0 (19)

Constraint (12) ensures the positivity of reflectance spec-
tra and constraint (13) the boundness for non-fluorescent
surfaces. In addition, we use the smoothness constraint in
(14) and (15) with a smoothing parameter p > 0 and a
convolution matrix H to apply the Laplace operator to r

H =




1 −2 1 0
. . .

. . .
. . .

0 1 −2 1


 (20)

Constraint (16) ensures that we only take into account re-
flectance spectra r, which lead to the given sensor response
c + ε. Constraint (17) introduces the observer’s light-
ing matrix with the auxiliary variable vr which is neces-
sary for the next constraint (18). This constraint together
with the objective function (11) allows us to sample in the
CIEXYZ space along the mentioned line. For each bound-
ary point the parameters g and v defining the sampling line
have to be chosen in a way that the MBD entries are uni-
formly distributed on the boundary of M c

Lab. An explana-
tion of how to achieve this aim can be found in the next

section
After solving this LP we get as results a tristimulus value
vr which is the intersection of the line and the bound-
ary of M c

XY Z and the appropriate reflection spectrum r.
There only exists one intersection point, because all the
constraints form a convex set. This intersection point vr

has to be transformed into CIELab coordinates and stored
in the MBD matrix. After calculating the MBD matrix the

Z
X

Y

g
g+ v�g+ v�

columns

ro
w

s

1

6

2

43 5 7

8

1

2

4

3

5

v
r

Figure 1: Sampling of the metamer subspace Mc
XY Z along the

line q + λv, λ ≥ 0. The corresponding MBD matrix has 8
columns and 5 rows

color correction can be realized by choosing the center of
gravity of all different points in the matrix. In our experi-
ments this point always lies inside M c

Lab.

Half Line Parameter

As mentioned before the sampling points have to be cho-
sen in a way, that they are uniformly distributed on the
boundary of M c

Lab. Since the metamer subspace is sam-
pled in the CIEXYZ color space we need some calcula-
tions to achieve this aim.

Anchor Point g: All half lines, which are used to de-
termine a MBD row, have the same anchor point g (figure
1). Therefore, we only have to calculate n anchor points
gi, i = 1, . . . , n for a n × m MBD matrix.
We have to select the anchor points in a way that they uni-
formly cover the luminance spread of M c

Lab. To determine
this luminance spread we have to solve the following two
LP problems

−vY
r r = min (21)

vY
r r = min, resp. (22)
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Figure 2: a) Contour plot of the metamer subspace by a special luminance level. Equidistant angles result in a non-uniform distribution
of the points on the contour. b) The inverse of Θ shows the angles which result in a uniform distribution of the contour points.

with the linear constraints

r ≥ 0 (23)

r ≤ 1 (24)

Hr ≤ ρ (25)

−Hr ≤ ρ (26)

Ωar = c + ε (27)

Ωvr = vr (28)

The LP problem containing the objective function (21) re-
turns a point vr,max ∈ M c

XY Z with maximal Y value. The
LP problem containing the objective function (22) gives a
point vr,min ∈ M c

XY Z with minimal Y value. We trans-
form both points into the CIELab space to get the lumi-
nance spread of M c

Lab

[Lmin, Lmax] := [LL(vr,min),LL(vr,max)] (29)

and sample this interval on n equidistant positions

Li := Lmin +
i − 1
n − 1

(Lmax − Lmin), i = 1, . . . , n. (30)

Then we can define the desired anchor points in the CIEXYZ
space in the following manner, where Yi corresponds to
Li, i = 1, . . . , n

gi := vr,Ymin +
Yi − Y1

Yn − Y1
(vr,Ymax − vr,Ymin) . (31)

All anchor points are located on the line section between
vr,min and vr,max and therefore in the convex set M c

XY Z .

Direction Vector v: The direction vectors have to be cal-
culated for each MBD matrix entry. Due to the structure
of the MBD their Y -components are zero.
For each luminance level, which is defined by an anchor

point, we would like to choose the direction vectors in
a way, that they uniformly cover the contour of M c

XY Z .
Therefore, we use a multigrid strategy: At first, we take a
decomposition of [0, 2π]

φk :=
2πk

K
, k = 0, . . . , K (32)

and the appropriate direction vectors

vk :=


 cos(φk)

0
sin(φk)


 , k = 0, . . . , K (33)

to calculate K +1 boundary points of M c
Lab, using the LP

problem (11)-(19). The resulting boundary pointsL(v r,k),
k = 0, . . . , K are in general not uniformly distributed over
the contour of M c

Lab at the regarding luminance level (see
figure 2a).
Assigning each angle φk, k = 0, . . . , K , a cumulative
distance

φ0 −→ ξ0 := 0 (34)

φk −→ ξk :=
k∑

j=1

∆E(L(vr,j−1),L(vr,j)) (35)

we can define a function Θ : [0, 2π] �→ R
+ by linear inter-

polation of these pairs. This function is strictly monotonic
increasing and therefore invertible. Then we can define
new angles by inverting Θ (see figure 2b)

φ̃i := Θ−1(
i

m
ξK), i = 0, . . . , m (36)

The corresponding direction vectors, which are defined by
equation (33), result in boundary points, which are more
uniformly distributed over the contour of M c

Lab at the re-
garding luminance level. Iterating this procedure leads to
nearly uniformly distributed points. In our experiments
we only use one iteration step.
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Results

We have compared our method (MBD) with the meth-
ods, which are described in the introduction, by simula-
tion. For this, we used a Sony sensor [6] with the sensitiv-
ities shown in figure 3 and the acquisition illumination F11
(narrow band white fluorescent lamp) under different CIE
standard viewing illuminants and with different databases
containing reflection spectra (Vrhel database [7]: Dupont:
120 Dupont paint chips, Munsell: 64 Munsell chips and
Objects: 170 natural and man-made objects. Addition-
ally we have used a spectrally measured IT8.7/2 target [5]
with 288 color patches). For all target based methods the
288 colors of another IT8.7/2 target were used as the train-
ing set. For the regression based methods we have taken
the polynomial order 3, so we have to calculate 20 coeffi-
cients for each polynomial. The basis of reflection spectra
which is needed by the LPCC method consists of 8 spec-
tra which include 99.9% of the energy of the training set.
The MBD matrix which is used by our method has 8 columns
and a variable number of rows depending on the lumi-
nance spread. We have chosen the maximal distance of
two neighbouring luminance levels by ∆E = 0.5, so the
number of rows in the MBD matrix is

round(2(Lmax − Lmin) + 0.5). (37)

As smoothness parameter we have chosen p = 0.0035.
In a second simulation we have added Gaussian noise to
the sensor response. The noise amplitude corresponds to
1% of the sensor’s maximal response.
The overall results are shown in table 1. Figure 6 shows
the results grouped with respect to the analyzed illumi-
nants. Some examples of the metamer subspace structure
can be found in figure 4 and 5.
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Figure 3: Sensitivities of the Sony CCD Sensor and the acquisi-
tion illumination for simulation experiments (narrow band white
fluorescent lamp - F11)
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Figure 4: Examples of some Munsell spectra extracted from the
Vrhel database
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Figure 5: Metamer subspaces of the spectra in figure 4 under
viewing illuminant F2 calculated for the Sony sensor with acqui-
sition illuminant F11

Conclusion

A new model based method for color correction was pre-
sented and compared with other methods by simulation
experiments. The new method characterizes the metamer
subspace of reflexion spectra, which result in the given
sensor response, by calculating a metamer boundary de-
scriptor matrix in the CIELab color space. Using a larger
matrix dimension we receive a better representation of the
metamer subspace. By calculating the center of gravity
of all different matrix entries we achieved a good approxi-
mation of the color with the smallest mean ∆E distance to
all other possible colors and therefore a good candidate for
color correction to obtain small mean errors. The results
validate the performance of our method for noisy systems
as well.
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Noise free 1% Noise
E(∆E∗
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