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Abstract

Today almost all color images are captured by RGB cam-
eras. They describe color information by three measure-
ments only. This is too restrictive for many applications
and alternative, multichannel color description techniques
have thus received a lot of attention recently. In this paper
we will describe some tools from time-frequency analysis
and study if and how they can be used for multichannel
color signal processing. We will mainly use these tools to
study if they can be used to investigate problems involving
scenes illuminated by different illumination sources.

Introduction

Traditional color imaging devices are almost all based on
three channels. This is too restrictive for many applications
and has lead to a number of new imaging technologies that
capture more than three channels per pixel. Recently a
new digital camera has reached the consumer market that
is based on four channel color measurements. The evalua-
tion of these new color images requires new methods and
models and in this paper we will introduce time-frequency
analysis as a toolbox that provides many techniques that
could be useful in the analysis of multispectral color in-
formation. We will introduce some basic tools from time-
frequency-analysis (TFA) and describe how they can be
used to characterize different color signals. We will illus-
trate their usage by solving some pattern recognition prob-
lems involving the influence of different types of illumina-
tion sources.

In this paper we will mainly focus on the pattern recog-
nition applications of TFA and only sketch the basic facts
from the general theory. A detailed description of time-
frequency methods can be found in the literature (see [1]
for an textbook introduction, [2] for a recent review or [3]
in the current volume).

Time-Frequency Analysis

Color signals are usually described as functions defined
on the interval of wavelengths of interest (like 350nm to
800nm). This description is complete in the sense that all
physics-related properties of this single color signal can
be derived from this description. This description is how-
ever redundant and many properties are not directly visi-
ble. Therefore other representations were developed and
used in multichannel color processing. Examples of such
representations are principal component analysis or Fourier
transform based methods. Here we will describe time-
frequency methods and illustrate their application in pat-
tern recognition. As an example consider the three illumi-
nation spectra shown in Figure 1. Two of the lamps are
characterized by the location of the distributions, the lamp
concentrated in the short wavelength range is a blue light,
the lamp concentrated in the long wavelength range is a red
light. Both of these lamps have in common that their distri-
butions are very smooth, they consist of a single Gaussian
shaped function. The property that discriminates the third
lamp from the other two is its form. This spectral distri-
bution consists of a superposition of several narrow-band
spectral distributions. The difference between the first two
lamps and the third lamp is therefore easier to describe in
terms of their Fourier transforms. The first two lamps are
low-frequency distributions whereas the third one contains
substantial high-frequency contributions. Time-frequency
methods try to combine both, the position and the fre-
quency aspects of signals into a single representation.

Time-frequency methods were first developed in the
field of quantum mechanics in the thirties and later they
were applied to study problems in one-dimensional sig-
nal processing, especially in radar and sound processing.
Here we view the spectral distribution in a pixel as a one-
dimensional signal and analyze it with the Wigner (also
called the Wigner-Ville) distribution, the oldest and most
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Figure 1: Illumination spectra for three lamps

important time-frequency method. For a color signal s(λ)
this distribution is defined as:

Ws(λ, ξ) =
∫

s
(
λ +

τ

2

)
s
(
λ− τ

2

)
e−iτξ dτ (1)

From the definition we can see the following important
properties: (1) only the signal is involved in the definition
and (2) the transform is quadratic and not linear. The first
property is certainly an advantage since it is not necessary
to select a basis as in most other multi-channel approaches.
The second property however complicates the application
of the Wigner distribution.

For the rest of the paper we will focus on one of the
more intuitive interpretations of the Wigner distribution as
a time-frequency energy distribution: the value of Ws at
the point (λ0, ξ0) is the probability that there was a varia-
tion of frequency ξ0 around the wavelength λ0. Among the
many properties of the Wigner distribution we mention that
it has real values, that for most signals it assumes negative
values and that it satisfies the marginals (see [3]). We also
mention that for many applications it is more convenient to
investigate the analytical signal z(λ) = s(λ) + i(Hs)(λ)
where Hs is the Hilbert transform of s (also this is de-
scribed in [3]).

We want to use the Wigner distribution to solve pat-
tern recognition problems and therefore we need to char-
acterize properties of the Wigner distribution with a few
characteristic measurements. If we think of the Wigner
distribution as a probability distribution we can first char-
acterize the complexity of a distribution with the entropy.
Since the ordinary (Shannon) entropy

∫
p(ω) ln p(ω) dω is

only defined for positive-valued functions we have to use

an alternative type of entropy. Here we measure the com-
plexity of a time-frequency distribution Ws by the Renyi
information (usually we set α = 3):

Rα (Ws) =
1

1− α
log2

(∫ ∫
Wα

s (λ, ξ) dλdξ

)
(2)

For the three illumination sources shown in Figure 1 we get
the Renyi information listed in Table 1. We see that the red
and the blue lamps have comparable values whereas the
Coolwhite lamp has a substantially higher entropy. This
indicates that Coolwhite is less concentrated than the red
and blue lamps.

Illumination Renyi information
TLD18W18 Blue 8.6991
TLD18W15 Red 8.7599

F18W840 Coolwhite 9.6046

Table 1: Renyi information of illumination sources

Another set of useful measures to characterize proba-
bility distributions are moments, such as the mean or the
variance. For the pure moments (i.e. moments in the wave-
length or the frequency variables alone) we get:

µn0 =
∫

λnWs(λ, ξ) dλdξ =
∫

λn|s(λ)|2 dλ

µ0m =
∫

ξmWs(λ, ξ) dλdξ =
∫

ξm|S(ξ)|2 dξ (3)

Mixed moments are computed as

µnm =
∫

λnξmWs(λ, ξ) dλdξ (4)

Moments of order up to two will later be used in the exper-
iments.

TFA and Stochastic Processes

Up to now we considered single color signals and their
Time-Frequency-Analysis. In pattern recognition we are
however mainly interested in sets of color signals. Often
these color spectra can be considered as results of stochas-
tic processes. In this case we write s(λ, ω) with a stochas-
tic variable ω instead of s(λ). We use E to denote the mean
or the expectation operator, i.e. integration over ω.

For the mean of the Wigner distribution of a stochastic
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process we get

W s(λ, ξ) =

= E
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where R (λ1, λ2) = E [s (λ1) s (λ2)] is the correlation func-
tion of the stochastic process. The function W s is known
as the Wigner-Ville-Spectrum of the stochastic process.

Next we note that the correlation function defines an
integral operator via the definition

fR (λ2) =
∫

R (λ1, λ2) f (λ1) dλ1

This is a positive definite operator and has therefore eigen-
functions bk with positive eigenvalues µk that span the
whole function space. Therefore we can write the corre-
lation function as:

R (λ1, λ2) =
∑

k

µkbk (λ2) bk (λ1)

For more details see [4] (Ch. 97 and 98).
If we insert this in the equation for the Wigner-Ville-

Spectrum then we get:

W s(λ, ξ) =

=
∫

R
(
λ +

τ

2
, λ− τ

2

)
e−iτξ dτ

=
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=
∑

k

µkWk(λ, ξ) (6)

where the Wk are the Wigner-distributions of the eigen-
functions bk of the correlation operator: the Wigner-Ville-
spectrum is the weighted sum of the Wigner-Distributions
of the eigenfunctions of the correlation operator with the
weights equal to the eigenvalues.

If the stochastic process consists of positive functions
then it follows from the Krein-Rutman theory (see [5] (pp.
2129)) that the first eigenfunction is positive. This im-
plies that the first eigenfunction is very similar to the mean
function. Since the first eigenvalue is also in most cases
very dominant we find that in most cases the Wigner-Ville-
Distribution of the process is very similar to the Wigner-
Distribution of the mean function. Under our simplified
reflection model we see also that the mean of the reflected
spectra is the point-wise product of the mean of the re-
flection spectra and the illumination spectrum. Under the

condition that the mean reflectance spectrum is almost a
constant we see therefore that the Wigner-Ville-Spectrum
should be very similar to the Wigner Distribution of the
illumination spectrum.

Experiments

In the first experiment we illustrate the similarity between
the Wigner-Ville-Spectrum and the Wigner-Distribution of
the illumination source. For this purpose we use 219 re-
flectance spectra from natural objects and 15 illumination
spectra (artificial light sources of different types of lamps).
We then compute the Wigner-Ville spectrum of the stochas-
tic process defined by the reflectance spectra and a given,
fixed illumination source. We thus have 219 realizations of
a given process. Figure 2 shows the Wigner-Ville-Spectrum
of the process when we use the illumination source F18W840
Coolwhite and the 219 spectra and in Figure 3 we show the
Wigner-Distribution of the light source (Here we do not
use the analytical signal).

WVS: F18W840Coolwhite
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Figure 2: Wigner-Ville-Spectrum

In the next series of experiments we investigate if the
tools from time-frequency analysis can be used to auto-
matically classify color signals depending on their under-
lying illumination sources. The experimental setup was as
follows: First we select a larger set of reflectance spec-
tra and a number of illumination sources and their spectral
distributions. We assume that the spectrum of the light re-
flected from an object point is the pointwise product of the
reflection spectrum and the illumination spectrum. From
the resulting spectra we eliminate first intensity variations
by normalizing the spectra to norm one. The problem is
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Figure 3: Wigner-Distribution of the Illumination

now if it is possible to characterize the shape of these nor-
malized spectra with the help of time-frequency measure-
ments. We thus characterize color signals by their ”chro-
maticity” properties and want to classify them depending
on their underlying illumination source.

In the following figures we illustrate some of our ex-
periments. Here we use the two scenes shown in Figures 4
and 5 (they are described in [6]) and the two (very similar)
illumination spectra shown in Figure 6. We selected these
images since they have very different color characteristics.

Figure 4: Original Image Scene5

Figure 5: Original Image Scene1
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Figure 6: Two illumination spectra

We first divided the images into rectangular regions
and then simulated the interaction of the reflectance spec-
tra with the different light sources by multiplying the re-
flection spectra with the illumination spectra. We used
more illumination spectra but used only the two illumi-
nation spectra in Figure 6 to test the classification perfor-
mance. The feature extraction step in the experiment was
as follows: From the resulting color signal we computed
first its norm and then we normalized the color signal to
norm one. The remaining color information was thus in-
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dependent of the intensity (in the L2 sense). From the
normalized color signal we computed the analytical sig-
nal and its Wigner distribution. Then we computed the
Renyi entropy, the two first order and the three second or-
der moments of the Wigner distribution. The result is a six-
dimensional measurement or feature vector in each image
pixel. Then we trained a classifier by selecting two illumi-
nation sources and a random set of 1000 pixels from each
class. These pixels were used to train a classifier. Here we
used the ’treefit’ method from the Matlab statistics tool-
box to fit a tree-based model. Then we apply the learned
classifier to all pixels in the image. To visualize the re-
sult we mapped all classification results to black and white
(black characterizing class one and white the complemen-
tary class). Those pixels in the image that were illuminated
by a source different from the two selected sources where
set to a common gray value (either black or white). In
Figures 7 and 8 we see which patches in Scene 5 where
classified as being illuminated by TLD18W860PolyluxXL
(in white) and by F18W840Coolwhite (in black). Only the
blocks in the diagonals participated in the test, the remain-
ing pixels were illuminated by the other sources. Figure 9
shows one of the results of the same experiment but now
with Scene 1.

Classification result/ Scene:  5 / Illumination: TLD18W860PolyluxXL

Figure 7: Points classified as illuminated by
TLD18W860PolyluxXL

In the next experiment we selected four spectra as il-
lumination sources (see Figure 10). From the pixels illu-
minated by a source we select randomly 500 points and
learn a regression classifier (as implemented in the Mat-
lab Statitics Toolbox) from the known 4 × 500 samples.
Then we apply the classifier to all pixels illuminated by

Classification result/ Scene:  5 / Illumination: F18W840Coolwhite

Figure 8: Points classified as illuminated by F18W840Coolwhite

Classification result/ Scene:  1 / Illumination: F18W840Coolwhite

Figure 9: Points classified as illuminated by by
F18W840Coolwhite

the selected sources. We then compute how the pixels
under a given illumination were classified by the classi-
fier. In Figure 11 we see the classification results obtained.
The curves in this figure show the probability distribu-
tions of the classification results for the different illumina-
tion sources. They show that the pixels illuminated by the
source TLD18W35White were almost all correctly clas-
sified whereas the pixels illuminated by the other three
sources had a wider spreading. The true class labels (which
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are of course arbitrary) were 2,4,6 and 8. This example
shows that using only standard tools from the theory of
time-frequency analysis and a standard classification method
from Matlab can produce useful results to solve difficult
color image processing problems.
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Figure 10: Four normalized illumination spectra

Figure 11: Classification results for four illumination spectra

Conclusions

In this paper we showed that Time-Frequency-Distributions
(especially the Wigner-Distribution) provide a description
of color signals that combine attractive features from both

the wavelength and the Fourier Transform description. We
also generalized the application of some Time-Frequency-
Analysis methods from the application to single color sig-
nals to stochastic processes of color signals. We combined
Time-Frequency-Analysis with the Krein-Rutman theory
of positive processes to analyze the Wigner-Ville spectrum
of stochastic processes of color signals. In the experimen-
tal part of the paper we used simple probabilistic charac-
terizations of color signals (like the entropy and moments)
to classify color signals generated by different illumination
sources. We showed that even relatively similar illumina-
tion sources could be classified correctly if they interacted
with a larger number of reflection spectra. We also did
similar experiments in which we used measured daylight,
skylight and twilight spectra and simulated their interac-
tion with real scenes. The results obtained in these experi-
ments are similar to the results presented above.

These results are only thought as examples that should
demonstrate how some basic tools from time-frequency
analysis can be used to investigate multispectral pattern
recognition problems. We do not claim that this is an op-
timal solution (further studies will probably lead to much
better results) but we showed that even these elementary
tools can produce useful results.
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