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Abstract
Most physics-based color processing methods define color
signals as functions of wavelengths. Such a description
characterizes the color signal completely from a physi-
cal point of view. This representation has however sev-
eral drawbacks: the description is redundant and important
properties are often hidden and difficult to extract from this
representation. Other color representations may provide
more compact descriptions or descriptions in which the
relevant properties are more clearly visible. Other color
systems have thus been used, including popular color sig-
nal representations based on principal component analy-
sis or Fourier transformations. Most of these methods de-
compose color signals as linear combinations in a given
basis system and they require thus the selection of a ba-
sis before they can be applied. In this paper we introduce
time-frequency methods as an alternative that avoids the
selection of a basis and provides a signal representation
that combines advantages of both, the wavelength and the
Fourier transform based signal description.

1. Introduction

Traditional descriptions of color (such as RGB, CIEXYZ,
CIELAB or HSV) are almost all three-dimensional. For
most applications this is not a problem since the human
color vision system is also based on three types of sensors.
For some problems this is however not sufficient since too
much information is lost when the information in a spec-
tral distribution is coded into only three numbers. Typical
examples where better descriptions are needed are appli-
cations where the interaction between illumination, reflec-
tion and detector is important. Here the full spectral in-
formation is usually necessary. The need for better color
descriptors has led to the establishment of the new research
field of multichannel color processing including the de-
velopment of color imaging sensors with higher spectral
resolution and new models for investigating sets of color
spectra.

Almost all models used in multichannel color process-
ing select a basis in the space of spectra, expand a given
spectrum in this basis and take a few coefficients as coor-
dinates. Popular choices of the basis are Principal Compo-
nents, Fourier series or even polynomial systems (a few ex-

amples are [1, 2, 3], see also [4]). All of these descriptions
have to select a basis first! A basis that is well-adapted to
one class of spectra may not be useful for another set of
spectra. Also different applications might require different
types of bases. A class of signal representations that avoid
many of these problems are Time-Frequency Distributions
(TFD) of which the Wigner distribution is the oldest and
most popular. In this paper we give a brief introduction
into TFD and describe why it is relevant to multi-channel
color processing. In a companion paper TFD are used to
study the interaction between illumination and reflection
and we will illustrate how time-frequency distributions can
be used to solve pattern recognition tasks.

Motivation

Time-frequency methods are by now a well-established re-
search field in signal processing [5, 6, 7] with its own ter-
minology. In this paper we will mainly use this terminol-
ogy with the exception that we will not use the term time
but talk of wavelength or position instead. Some confusion
may arise because the term spectrum has different mean-
ings in color science and signal analysis and mathematics.
We hope that this will not be a problem and that the appro-
priate meaning will be clear from the context.

As an illustration of the basic ideas behind the appli-
cation of TFD’s in color processing consider the spectra
shown in Figure 1.

The first spectrum comes from a PolyluxXL/860 lamp,
the second from a TLD18/16Yellow lamp and the third is
a daylight spectrum measured in Norrköping, Sweden. In
signal processing this representation is known as the time-
signal. Here we call it the wavelength signal. Another ba-
sic form of signal representation is the frequency represen-
tation in which the signal is represented as a superposition
of elementary sine and cosine waves. The contributions of
the different elementary sines and cosines is given by the
coefficients of the Fourier transform defined as

S(ξ) =
1√
2π

∫
s(λ)e−iλξ dλ (1)

We will usually denote Fourier transforms with capital let-
ters: S is thus the Fourier Transform of s.

We think of the wavelength representation and its Fourier
transform as representations of the same color signal in dif-
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Figure 1: Spectral Distributions of Daylight and two Lamps

ferent coordinate systems since the signal can be recovered
from its Fourier transform. Figure 2 shows the absolute
value of the Fourier transforms of the illumination spectra
shown in Figure 1.
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Figure 2: Absolute Values of Fourier Transforms

From the two Figures we see that the two representa-
tions illustrate different, characteristic features of the two
sources. For example we see easily from Figure 1 that
the peak of the Yellow lamp spectrum lies to the right of
the peak of the corresponding spectrum for the PolyluxXL

lamp. This information is not as easy to extract from the
Fourier transform. On the other hand we see from Fig-
ure 2 that the Yellow lamp has a much smoother distri-
bution than the PolyluxXL which has more contributions
from higher Fourier coefficients. In the extreme case of
a monochromatic spectrum the wavelength description is
optimal since we can describe the spectrum completely
with a single parameter, the location of the monochromatic
contribution. The absolute value of the Fourier transform
of such a mono-chromatic spectrum is however constant
everywhere. The other extreme is a perfectly white light
with a constant value in the wavelength description of the
spectrum and a single peak in the Fourier description. This
illustrates a general property of all signals: If they are con-
centrated in the wavelength representation then they are
spread out in the Fourier domain and the other way around,
if they are localized in the Fourier domain, they are spread
out in the wavelength domain. In physics this is known as
the uncertainty principle: A color signal cannot be concen-
trated in both the wavelength and the Fourier domain. In
Figure 2 we see thus that the Fourier transform of the day-
light spectrum is much more concentrated around the ori-
gin than the two lamps. These are only some observations
to show that both signal representations give complemen-
tary descriptions of a signal and that for a more complete
description a combination of these two is necessary.

Definition and Computation

An attempt to construct a signal representation that com-
bines both the time and the frequency distribution aspects
is Time-Frequency-Analysis. The oldest tool is the Wigner-
Ville Distribution (WVD) introduced by Wigner in 1932.
For a color spectrum s(λ) this distribution as defined as:

Ws(λ, ξ) =
1
2π

∫
s
(
λ +

τ

2

)
s
(
λ− τ

2

)
e−iτξ dτ (2)

The following observations may help to understand some
properties of the transform:

• The main characteristic feature of the transform is
the fact that it depends on the PRODUCT of the
signal, or more precisely on the product of the signal
and a folded version of it. It thus analyses the over-
lap of two parts of the signal that are located below
and above the wavelength λ under consideration. If
a property holds both below the current wavelength
and above it then the property has an influence on
the current value of the transform at λ.

• The same reasoning holds also for properties in the
Fourier domain since

Ws(λ, ξ) =
∫

S

(
ξ +

θ

2

)
S

(
ξ − θ

2

)
e−iθλ dθ

(3)
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• Another, obvious, observation is that the transform
maps the one-dimensional (wavelength or Fourier)
representation into a two-dimensional function W .

• The Wigner distribution is real and often it is use-
ful to view it as a time-frequency energy or ”prob-
ability” distribution: the value of Ws(λ0, ξ0) at the
point (λ0, ξ0) is the probability that there was a vari-
ation of frequency ξ0 (in the Fourier sense) around
the wavelength λ0. This is not strictly true since it
can be shown that for almost all spectra (except the
Gaussians) the Wigner distribution will assume neg-
ative values. An evaluation of the WVD can be com-
plicated but the probability interpretation is helpful
in many applications.

Before we summarize a number of useful properties
of the Wigner distribution we have to make two remarks
about the implementation and computation of the trans-
form. We first note that the Fourier transform S(ξ) of a
color signal is symmetric, i.e. S(ξ) = S(−ξ) since color
spectra are real-valued functions. Using the Fourier trans-
form as such would imply that the mean frequency (de-
fined as

∫
ξ|S(ξ)|2 dξ) is zero. Also the spread of the fre-

quencies (defined as
∫

ξ2|S(ξ)|2 dξ) would then be domi-
nated by the distance between the contributions of S(ξ) on
the positive and negative frequency axis. The standard way
to circumvent this problem is to replace the real spectrum s
by the complex function z defined as

z(λ) = s(λ) +
i

π

∫
s(λ′)
λ− λ′

dλ′

The Fourier transform Z(ξ) of this new signal has now the
property that it is zero for negative frequencies and has the
same value as S for positive frequencies. The imaginary
part i

π

∫ s(λ′)
λ−λ′ dλ′ is known as the Hilbert transform and

the function z is the analytical signal. In the following
we will thus always use the analytical signal instead of the
original spectrum.

The Wigner distributions of the two lamps and the day-
light spectrum is shown in Figures 3,4 and 5. All of these
Figures show the first 30% of the frequency distributions
and all of them use a logarithmic scale for the value of
the Wigner-distribution. Comparing the distributions of
the Yellow lamp and the daylight we see that the day-
light is smoother (smaller frequency contents) and more
blueish (shifted to the left, i.e. smaller wavelengths). We
see also that the daylight spectrum contains some distinct
higher frequency contributions in the middle and longer
wavelength range. The PolyluxXL lamp has, as expected,
many high-frequency components and a relatively com-
plex Wigner distribution.

Figure 3: Wigner distribution of the daylight spectrum

Figure 4: Wigner distribution of the TLD18/16 Yellow Lamp

Basic Properties

Among the many properties of the WVD we summarize
here a few that are of obvious interest for color spectra:

1. If the spectrum s is zero outside the interval [λm, λM ]
then the WVD Ws(λ, ξ) (as a function of λ) is also
zero outside this interval. A similar property holds
also for the frequency part ξ.
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Figure 5: Wigner distribution of the PolyluxXL/860 Lamp

2. The signal can be recovered from its WVD:

s(λ) =
1

s(0)

∫
W (λ/2, ξ)eiλξ dξ

3. Shifting the spectrum results in a shift of the WVD
(the same holds for frequency shifts)

4. The WVD is always real

5. It satisfies the marginals:∫
Ws(λ, ξ) dξ = |s(λ)|2, and∫

Ws(λ, ξ) dλ = |S(ξ)|2

(S is the Fourier transform of s)

6. It preserves the energy:∫ ∫
Ws(λ, ξ) dλdξ = ‖s‖2

7. Moyal relation: For two spectra s, s′ we have:∫ ∫
Ws(λ, ξ)Ws′(λ, ξ) dλdξ =

∫
s(λ)s′(λ) dλ

8. Correct averages:∫
[g1(λ) + g2(ξ)]Ws(λ, ξ) dλdξ =

=
∫

g1(λ)|s(λ)|2 dλ +
∫

g2(ξ)|S(ξ)|2 dξ (4)

The simplest way to use Time-Frequency Analysis for
color spectra analysis is the visual evaluation of the WVD.
Since the WVD provides a representation of the signal that
is similar to our interpretation in terms of position and fre-
quency it is often easier to understand the WVD than the
original spectrum.

Another way to utilize time-frequency analysis is re-
lated to the probability interpretation of the WVD. Even
though it is not correct (remember, the WVD can have
negative values) it can be used to compute probabilistic
parameters that characterize the spectrum. As an exam-
ple consider the correct averages property in Eq. 4. Using
g1(λ) = λ, g2(ξ) = 0 gives a kind of mean value for the
position probability distribution and g1(λ) = 0, g2(ξ) = ξ
the mean value for the frequency. Equation 4 gives also a
recipe for other functions of λ and ξ. A similar measure of
the location of the distribution is the coordinate (λM , ξM )
where |W | has its largest value (maximum probability).
The first moments (mean values) of the wavelength and
the frequency representation of 50 Planck spectra in the
range 5000K to 12000K (with equal spacing in the Mired-
parameter=inverse temperature scale) is shown in Figure 6.
We see that the spectra are all very smooth (with the spec-
tra at low temperature slightly smoother) and that the con-
centration of the distributions shift to the shorter wave-
length (blue) region as the temperature increases.
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Figure 6: Mean position and frequency values of the Wigner dis-
tributions of Planck spectra
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Filter design and basis pursuit

In Time-Frequency Analysis there are two important ba-
sic operations, Time-shifts and Frequency shifts. If s is a
signal and λ0, ξ0 are the time and frequency shift param-
eters then the (time and frequency) shifted signal sλ0,ξ0 is
defined as

sλ0,ξ0(λ) = s(λ− λ0)eiξ0λ

It can then be shown that shifting a spectrum in time and
frequency results in a simple shift of the Wigner distribu-
tion.

The signals with the simplest TFD are scaled Gaus-
sians since their shape is preserved under the Wigner trans-
form. These Gaussian distributions are known as atoms.
They are described by their width and their location on the
wavelength and the frequency axes and they are charac-
terized by being maximally concentrated in the TF-plane.
Since time and frequency shifts of the signals result in
shifts of the Wigner distributions it is natural to consider
time-frequency shifted scaled Gaussians as the basic build-
ing blocks of the theory. It is therefore often desirable to
approximate a given function as a linear combination of
(position- and frequency-shifted) Gaussians. This gives a
parameterized description of the original spectrum based
on the parameters of the Gaussians used. The Moyal re-
lation shows that matching can be done in the TF-plane
or in the signal domain. Since the atoms are easiest de-
scribed in the TF-plane it is natural to do the matching for
the Wigner distributions. In the following example this
is done by iteratively finding the best matching Gaussian
atom and removing its influence from the current signal.

We illustrate the basic idea by analyzing the spectrum
of the lamp PolyluxXL/860 used earlier in Figures (1,2,5).
In the first series of Figures (7,8,9) we see how the different
parts of the original spectrum are approximated by atoms.

In Figures( 10, 11) the Wigner distributions of the ap-
proximations with two and eleven atoms are shown. This
should be compared with the Wigner distribution of the
original shown in Figure (5)

This experiment also demonstrates a fundamental dif-
ficulty with the TFD approach in general: The TFD is a
quadratic representation of the signal and the TFD of the
sum of two signals is not the sum of the TFD’s of the sig-
nals but usually a complex interference pattern. The iter-
ative algorithm used is thus only suboptimal. An optimal
strategy should take into account the mixed terms in the
TFD of the sum.

Conclusions

We gave an overview over some basic tools from the the-
ory of Time-Frequency Analysis that should be of in inter-
est in spectral based color processing. We showed that in
this framework we get a description of the spectra that is
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Figure 7: Approximation of the spectrum of the PolyluxXL/860
lamp with one time-frequency atom
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Figure 8: Approximation of the spectrum of the PolyluxXL/860
lamp with two time-frequency atoms

independent of a selected coordinate system. As an illus-
tration we showed how to generalize the approximation of
spectra by Gaussians to approximations based on time and
frequency shifted Gaussians.
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Figure 9: Approximation of the spectrum of the PolyluxXL/860
lamp with eleven time-frequency atom

Figure 10: TFD of PolyluxXL/860 with two time-frequency atoms
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