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Abstract

Understanding the properties of spectral distributions of
daylight and its dynamical changes at different sites with
varying atmospheric conditions is an active research area.
Results obtained in these studies are of interest in many
fields such as color vision, meteorology, biology, photog-
raphy, etc... Many efforts to measure and model daylight
spectra originate in the 60s [1, 2, 3, 4, 5]. The SMARTS
model [6] is one example of recent tools to compute clear
sky spectral irradiance from a description of atmospheric
conditions, time and solar geometries. In this paper we
describe our investigation of daylight spectra based on the
principal component analysis (PCA) of spectra. We will
show that the structure of the space leads to the well-known
Poincaré disk model of hyperbolic geometry. The natural
group SU(1,1) operating on the disk is then used to model
the PCA representations of measured daylight spectra se-
quences and spectra generated by the SMARTS model.

1. Introduction

In this paper, we will describe our investigations of se-
quences of spectral distributions. Daylight illumination
spectra sequences are typical examples and their proper-
ties will be described in the experimental part.

The daylight spectra (either measured spectra or se-
quences of modelled spectra generated from simulation
programs such as SMARTS) investigated in this paper are
special examples of spectral distributions in general. By a
spectral distribution we mean a non-negative function of
a single variable. We approximate spectra by functions
in a low dimensional space that describe daylight spectra
with minimum approximation errors. The spectra, how-
ever, do not fill up the original vector space because of the
non-negativity constraint. Instead they are all located in

a convex conical region of the vector space. This region
can be characterized by special isometry groups preserv-
ing the geometry. Using the conical structure of the space
and the corresponding isometry groups, we can make op-
timal use of the non-negativity constraint. With the group
theoretical description of spectral sequences, we can lin-
earize problems involving these spectra leading to meth-
ods that are more powerful than techniques based on mere
curve fitting. This group theoretical linearization is cru-
cial in many subsequent applications such as: illumination
invariants, optimization, forecast, tracking and segmenta-
tion.

In this paper we start with an investigation of the struc-
ture of the PCA space of spectra. We consider a spec-
trum as a non-negative one dimensional signal and then
we present some theoretical results showing that the first
eigenvector of spectral datasets is always non-negative.
Under certain conditions (for example when all the spectra
are positive or when the correlation matrix is irreducible)
we show that this vector is strictly positive. From this we
derive the conical geometry of the PCA space of spec-
tra. A natural set of transformations of this cone are the
Lorentz transformations.

It is well known that illumination spectra can be de-
scribed by linear combinations of only few basis vectors [7,
4, 8, 9, 10, 11, 12]. Here we restrict us to the three di-
mensional conical space spanned by the three dimensional
PCA basis. This three dimensional description is com-
bined with a perspective projection onto a two dimensional
disk on the complex plane. The resulting, projected co-
ordinate sequences are then investigated using subgroups
of the SU(1,1) group. The description of the coordinates
of illumination spectra sequences on the disk using one-
parameter subgroups of SU(1,1) can be considered as defin-
ing a group structure on the sequences and a linearization.
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In the experimental part of the paper we will describe
our experiments with two different sets of illumination
spectra: a large database containing 21871 daylight spec-
tra measured in Sweden, and sequences of daylight spec-
tra generated by the simulation program SMARTS2 with
changing parameters describing atmospheric conditions or
the Sun position.

2. The conical model

2.1. Positivity of the first PCA basis

We will first describe a derivation of the conical struc-
ture of the spectra space using general results from ma-
trix theory and functional analysis. We will also intro-
duce the notations used in the rest of the paper. Denote
by I = [λmin, λmax] the closed interval of the wave-
lengths of interest. The Hilbert space of square integrable
functions on this interval is H(I). The scalar product of
elements f, g in the Hilbert space will be written as 〈f, g〉.
We define a spectrum as an element in the Hilbert space
with non-negative function values everywhere: s(λ) is a
spectrum if s(λ) ≥ 0 for all λ ∈ I . For illuminant spec-
tra the function values could be the photon counts and for
reflection spectra they could represent the probability that
a photon of a certain wavelength is reflected from the sur-
face point.

A random function sω(λ) ∈ H(I) where ω is a stochas-
tic variable in the probability space, represents elements
in the spectra space. The correlation function is defined as
the function Γ(λ1, λ2) = E(sω(λ1) · sω(λ2)) where E(·)
denotes the expectation with respect to the stochastic vari-
able ω. This correlation function defines the correlation
operator OC that maps the function f to another function
fC given by:

OCf(λ2) = fC(λ2) = 〈Γ(λ1, λ2), f(λ1)〉 (1)

If the functions sω(λ) are positive then it can be shown
that the correlation operator OC is compact, self-adjoint,
positive (mapping positive functions to positive functions)
and positive definite. Applying the Krein-Rutman the-
ory [13, pg. 2129], the following results can be derived:

• Since OC is self-adjoint and positive, all of its eigen-
values are real and positive.

• The eigenfunction corresponding to the largest eigen-
value is also strictly positive.

Practically we often use finite dimensional vectors to
describe spectra resulting in a correlation matrix instead of
a correlation operator. In this case, the Perron-Frobenius
theory [14, chapter 13] can be applied to derive the non-
negativity of the first eigenvector. From Perron-Frobenius

theory follows that there exists a non-negative eigenvector
which is associated with the largest eigenvalue of a non-
negative matrix. The correlation matrices of non-negative
spectra sets have always non-negative entries, thus satisfy
this condition. If the spectra are strictly positive, or if the
correlation matrix is irreducible then this eigenvector is
strictly positive. We observe that in all the investigated
spectra databases, these two later constraints are always
satisfied, i.e. we can always assume that the first eigen-
function/vector of the investigated database is strictly pos-
itive.

2.2. Conical structure of PCA spaces of spectra

The conical structure of the PCA coordinate space of spec-
tra is a consequence of the fact that the first PCA basis
function is strictly positive.

Given an orthonormal set of bounded basis functions
(bk)K

k=0 where b0 is strictly positive, we see that:

• A spectrum s(λ) is characterized by its coordinates
(σk)K

k=0 with regard to this basis, i.e. σk = 〈s, bk〉.
• The first coordinate σ0 of the spectrum is always

positive since it is a scalar product of a positive and
a non-negative function1.

• There exists a constant C such that the following
holds for all spectra coordinates:

∣∣∣∣∣∣

∥∥∥(σ)K
k=1

∥∥∥
σ0

∣∣∣∣∣∣
< C (2)

Proof Since b0 is positive, there exists a constant
C1 > 0 such that: σ0 = 〈s, b0〉 > C1〈s, 1〉. From
the constraint on the bound of the basis functions,
we can also see that σk = 〈s, bk〉 ≤ C2〈s, 1〉 for

some positive constant C2. This leads to
∥∥∥(σ)K

k=1

∥∥∥ ≤√
KC2〈s, 1〉. Therefore

∣∣∣∣∣∣

∥∥∥(σ)K
k=1

∥∥∥
σ0

∣∣∣∣∣∣
<

√
KC2

C1
= C

In all of the spectra databases we have investigated we
observe that Eq. 2 holds for C = 1, i.e. the coordinate
space of spectra has a topology of a three dimensional unit
cone.

From this follows that for all spectra in the set we have:

σ2
0 − σ2

1 − σ2
2 > 0; σ0 > 0 (3)

1We exclude the zero valued function s(λ) = 0; ∀λ from the space
of spectra.
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where σk is the k-th coefficient in the expansion. A coni-
cal projection in the space of spectra coordinates is defined
as the following perspective projection:

x = σ1/σ0; y = σ2/σ0 (4)

A spectrum in this space is thus characterized by its
σ0 (related to the intensity) and the coordinate z = x + iy
(related to the chromaticity). The points z = x + iy lie on
the open unit disk of the complex plane. In the following
we will use the terms ”intensity” and ”chromaticity” in
the sense defined here. They are convenient terms but are,
of course, different from their meaning in traditional color
science.

3. Group theoretical description of
chromaticity sequences

Given a set/sequence of illumination spectra, we first com-
pute the correlation matrix of the set. The three dimen-
sional PCA basis is then constructed by selecting the three
eigenvectors of this correlation matrix corresponding to
the largest eigenvalues. In this projection space, spectra
are represented by their three-dimensional coordinate vec-
tors.

Next we characterize a spectra sequence by its sequence
of projected points as shown in Eq. 4. From Eqs. 4, 3 we
can see that those projected points are located on an open
unit disk defined in the complex plane. The open unit disk
is denoted by U and defined as:

U = {z ∈ C : |z| < 1} (5)

It is known that the open unit disk is a two dimensional
Poincaré model of hyperbolic geometry, and its isometry
transformation group is SU(1,1). An isometry transfor-
mation group of a geometry is a group operating which
preserves the geometrical distances and angles. SU(1,1)
is the group consisting of 2 × 2 complex matrices of the
following form:

M =
{[

a b

b a

]
: a, b ∈ C, |a|2 − |b|2 = 1

}
(6)

An element M ∈ SU(1,1) acts as the fractional linear
transformation on a point z ∈ U:

w = M〈z〉 =
az + b

bz + a
(7)

Special subgroups of SU(1,1), known as one-parameter
subgroups M(t) are given by group elements that are func-
tions of the real values t, having the following properties:

M(t1 + t2) = M(t1)M(t2); ∀t1, t2 ∈ R
M(0) = E = identity matrix (8)

For a one-parameter subgroup M(t) we introduce its in-
finitesimal generator, represented by the matrix X:

X =
dM(t)

dt

∣∣∣∣
t=0

= lim
t→0

M(t)−E
t

(9)

The infinitesimal matrices X representing one-parameter
subgroups M(t) ∈ SU(1,1) form the Lie algebra su(1,1),
which consists of 2× 2 complex matrices of the form:

su(1,1) =
{(

iγ β
β −iγ

)
: γ ∈ R, β ∈ C

}
(10)

The Lie algebra su(1,1) forms a three-dimensional vec-
tor space [15], spanned by the basis (Jk):

J1 =
(

0 1
1 0

)
; J2 =

(
0 −i
i 0

)
; J3 =

(
i 0
0 −i

)

(11)
Each infinitesimal matrix X ∈ su(1,1) of a one-parameter
subgroup M(t) ∈ SU(1,1) has thus a coordinate vector
specified by the three real numbers ξ1, ξ2 and ξ3.

Given a start point z(0) on the unit disk together with a
one-parameter subgroup M(t) we define an SU(1,1) curve
as the following function of t:

z(t) = M(t)〈z(0)〉 = etX〈z(0)〉; t ∈ R, z(t) ∈ U
(12)

The SU(1,1) curves are straight lines in the three di-
mensional Lie algebra space su(1,1), thus the estimation of
input chromaticity sequences using SU(1,1) curves can be
considered as the linearization. The Lie algebra SU(1,1)
provides a powerful tool to linearize problems involving
chromaticity sequences. We developed several methods [16]
to compute the group parameters of SU(1,1) curves from
input data sequences. These methods are used to study the
properties of sequences of daylight spectra.

4. Experiments

We investigated two different types of daylight spectra:

• A database of 21871 daylight spectra measured at
the same location (Norrköping, Sweden) from June
16th, 1992 to July 7th, 1993; between 5:10 and 19:01
(Local time); in 5nm steps from 380nm to 780nm,
and

• Daylight spectra sequences generated by the simu-
lation program SMARTS2 [6]. The SMARTS model
accepts as its input the Sun position and atmospheric
parameters including: Ångström beta, precipitable
water, ozone, and surface pressure. The wavelength
range of the generated spectra was 380nm to 780nm
in 1nm steps. In a series of experiments, sequences
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of spectra were generated by changing a single pa-
rameter in its allowed range while keeping the oth-
ers fixed to the default values. In another experi-
ment a large set of simulated daylight spectra with
all the feasible combinations of parameters were also
created to simulate the investigated space of day-
light spectra.

Fig. 1 shows one result obtained from the study of the
measured spectra. It shows the analysis of a sequence of
daylight spectra measured at 10/March/1993 and shows
that such sequences in general create non-linear curves on
the disk and that these sequences can be adequately be
described by SU(1,1) curves. Usually the variations in
such sequences are very small and the sequence shown
in Figure 1 is an atypical example where we have a large
variation and even a gap between two subsequences (for
some unknown reason). Even for this relatively compli-
cated sequence we find a very good description by the
one-parameter curve.
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Figure 1: SU(1,1) curve estimating the chromaticity of a se-
quence daylights measured at 10/March/1993

Figs. 4, 5, 6 show the results of the SU(1,1) estima-
tions of SMARTS2 spectra sequences. The chromatic-
ity sequences are generated by SMARTS2 simulation pro-
gram by changing a single atmospheric or the Sun position
parameter at time while keeping other parameters fixed to
the default values for Norrköping condition2.

Fig. 5 and Fig. 6 show the same set of chromaticity
points of the daylight spectra generated with different val-
ues of the Ångström beta and Precipitable water parame-
ters varying within the allowable ranges [0.0032:0.03:0.30]

2i.e. if not mention otherwise SPR=1013mb, Altitude=0,
Ozone=0.334cm, Precipitable water=1.4cm, Ångström alpha=1.3,
Ångström beta=0.045, Aerosol asymmetry factor=0.64, Longti-
tude=16.15, Latitude=58.58, Broadband albedo=10%, Wavelength
range=380:780nm

and [0.0:0.5:5.0] respectively. They can be seen as the im-
ages of a grid in the (Ångström beta, precipitable water)
plane under the SMARTS2 mapping. The chromaticity se-
quences corresponding to a single parameter (Beta or Wa-
ter) changes are then created by grouping all chromaticity
points having the same setting value of the other parame-
ter. Fig. 5 shows SU(1,1) curves accounting for Ångström
beta parameter changes with different settings of precip-
itable water. Here we choose the value of the precip-
itable water parameter as constant and estimate the one-
parameter group as the Ångström beta varies. In Fig. 6 we
show the SU(1,1) curves accounting for precipitable wa-
ter parameter changes with different settings of Ångström
beta. The group coordinates characterizing these estimated
SU(1,1) curves are not constant but forming a linear func-
tion of different settings of the other parameter3. Figs. 2, 3
show the computed group coordinates of estimated SU(1,1)
curves varying as functions of the other parameter’s set-
tings.

Another example is shown in Fig. 4 where we gener-
ated different daylight spectra by varying the zenith angle
within the range [3 : 2 : 85◦] with all other parameters
set to default values. This corresponds to a sequence of
daylight spectra with different positions of the Sun, and
can also be considered as time sequences of daylight spec-
tra4. The same SU(1,1) curve can be used to estimate
both sequences of equally spaced zenith angle changes
and equally spaced time changes, but the group parame-
ters t describing the locations of points on curve are dif-
ferent for each sequence.
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Figure 2: Group coordinates of Water changing curves as func-
tions of Beta settings

In all the experiments described above, we found that
SU(1,1) curves provide good estimation for all SMARTS2

3i.e. Ångström beta settings for Water changing curves and Precip-
itable water settings for Beta changing curves

4Zenith angle is a non-linear function of time of the day
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Figure 3: Group coordinates of Beta changing curves as func-
tions of Water settings

spectra sequences generated by changing any single pa-
rameter. The method also provides good approximations
when the remaining parameters are set to other reasonable
values different from the default values.
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Figure 4: SU(1,1) curve estimating sequence of spectra with
changing Sun position (zenith angle)

5. Discussions and Conclusions

We described a framework to investigate sequences of grad-
ually changing spectra. This framework is not restricted to
the analysis of illumination spectra with PCA description,
but also covers all color spaces having conical properties
(where the conical structures investigated in the Krein-
Rutman theory are very general, they are for example in-
dependent of a metric in the vector space under consid-
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Figure 5: SU(1,1) curves estimating sequences of spectra with
changing Ångström beta, different settings of precipitable water
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Figure 6: SU(1,1) curves estimating sequences of spectra with
changing precipitable water, different settings of Ångström beta

eration). In the experiments described in this paper, we
only concentrated on the changing daylight illumination
sequences as the input data of interest (see also [17, 18]).

The success of the framework in investigating num-
ber of different daylight databases, including the measured
and artificially generated by simulation software, demon-
strate the applicability of this framework. The existence
of a group structure in the dataset and the corresponding
linearity properties can be used in subsequent processing
steps.

One application where the group structure of the chang-
ing illumination spectra sequences can be used is the com-
putation of illumination invariants. This follows from the
observation that one-parameter transformation groups de-
fine curves in the data space and invariants are simply
functions that are constant on these curves. One parame-
ter groups define thus differential equations and invariants
are simply solutions of these differential equations. These
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group invariants can be easily and systematically derived
by solving the partial differential equations. Nowadays
this can be done automatically using symbolic math pro-
grams like Maple. For more information on the connec-
tion between the group theoretical structure and differen-
tial equations the reader may consult [19, 20]

Optimization problems involving gradually changing
spectra can also benefit from the group theoretical struc-
ture of the space of spectra since the linearity of the chro-
maticity sequences allows the use of fast Newton-type meth-
ods to solve the problem.

Compression is another application, where one does
not only compress the spectra with the lower dimensional
PCA coordinate vectors, but also describes the whole se-
quence of changing spectra by just a few parameters.

Although we do not derive the relationship between
group parameters and the parameters of the real physical
processes, we still can expect the usefulness of the frame-
work in many different applications.
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