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Abstract 

In recent years the development and design of 
multispectral color image acquisition devices has received 
great attention from the color scientific community.  And 
the use of these multispectral devices has grown 
dramatically to achieve different purposes.  Here we tackle 
the optimal design of a polyvalent three-channel 
multispectral system, with three channels, which would be 
able to reconstruct the spectral reflectances of objects to 
be imaged and the spectral power distribution of the 
illumination, as well as to provide illuminant invariant 
descriptors.  
 To achieve the optimal design of such a polyvalent 
multispectral device we test different spectral sensitivity 
of the different channels.  

Introduction 

Up to date the main objectives of the multispectral devices 
have been: (1) to provide accurate color characterization, 
and (2) to reconstruct scene surface spectral reflectances 
and/or the illuminant spectral power distribution (SPD).  
The first purpose, which can fail due to metamerism, can 
be achieved if the spectral sensitivities of the device 
satisfy the Luther-Ives condition.1-2  The second purpose, 
which provides a more complete characterization, is 
achieved by using “optimal” filters coupled to 
monochrome digital cameras or by the  design of 
“optimal” spectral sensitivities for the different camera 
channels.3-9 

All the research to recover both the surface spectral 
reflectance and the illuminant spectral power distribution 
from the image data takes into account the statistical 
properties of the objects that are to be imaged and of the 
illuminants to be used.  For example low-dimensional 
linear models,10-11 which have already been proved 
accurate to recover spectral functions, benefit from the 
spectral correlation of a set of empirical spectra.  If the 
basis functions used in these linear models are calculated, 
for example, to minimize the mean squared error, then 
they are all orthogonal eigenvectors and may be obtained 
from a principal component analysis (PCA). 

Simultaneously several authors, trying to solve the 
color constancy problem, have shown that a particular 
linear combination of log RGB responses is invariant to 
light intensity and light color.12-14 Therefore this 
combination defines invariant descriptors to the changes 
in the illuminant over a scene, solving the one-

dimensional color constancy problem at a pixel, which is 
appropriate for object recognition.  So far these invariant 
descriptors rely on two assumptions: (1) the camera 
spectral sensitivities must be sufficiently narrow (not far 
from delta functions), and (2) illumination spectra are 
close to Planckian spectra. More recently Lenz et al.15 
have shown how to use transformation groups to calculate 
different independent invariants for a given class of 
transformations. 

In this paper we study what would be the optimal 
design of a three-channels multispectral camera in order to 
perform three different tasks simultaneously: to provide 
natural illuminant invariant descriptors and to allow 
spectral recovery of both the objects spectral reflectance 
and the spectral power distribution of natural illumination. 

Spectral Recovery Based on Linear Models 

Low-dimensional linear representation of object spectral 
reflectances has been proved extensively in the literature 
to be very efficient (see Ref. 4 for a review). Most authors 
agree that a dimension between 3 and 5 is necessary to 
achieve a high degree of recovery accuracy, depending on 
the different databases statistical properties. 

Similarly several authors have shown that the natural 
illumination spectra (i.e. daylight, skylight and twilight) 
variance can be explained with the linear combination of 3 
to 5 basis functions in the visible spectral range (see Ref. 
16 for an overview).  

If a Principal Component Analysis (PCA) is used to 
obtain those basis functions, then they can have negative 
values, as shown in Figures 1 and 2.  So it is impossible to 
have real sensors with the same spectral transmittance as 
the basis functions.  
 Therefore alternative sensors must be selected in 
order to recover spectral functions from the response of 
these real sensors. This is accomplished in this paper by 
using an inversion recovery algorithm (see for example 
Refs. 4 and 9) and an exhaustive search method to obtain 
the best set of Gaussian sensors. 

Invariant Descriptors 

Very recently several authors12-14 have defined invariant 
descriptors that remain constant despite the change in light 
intensity and light color. These invariant descriptors to the 
illumination changes in a scene are linear combination of 
the log RGB responses and solve the one-dimensional 
color constancy problem at a pixel in artificial systems.  
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Figure 1. Spectral distribution of the first three ColorChecker 
reflectance eigenvectors 
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Figure 2. Spectral distribution of daylight eigenvectors. 

 
Considering the definition of this invariant parameter, 

accurate one-dimensional color constancy is obtained 
when the three sensors have very narrow spectral 
sensitivities (not far from delta functions) and when 
illumination spectra are close to Planckian spectra.  

Nevertheless if the sensors are broadband (as is the 
case in commercial cameras), the accuracy of the invariant 
descriptors can be checked by representing, for example, 
for any group of objects and illuminants the log (B/R) 
versus the log (G/R), being R, G, and B, the response of 
the three sensors, respectively.  If the invariant is valid for 
a set of sensors this representation will generate for each 
object under whatever illuminant, points over a straight 
line whose slopes must be similar for all the objects in the 
scene (see ref. 12 for the proof and a detailed discussion). 

The constraint of Planckian spectra was overcome by 
Marchant and Onyango13-14 to include natural illumination 
as daylight.  

Optimal Sensor Search and Experiments 

Here we look for the optimal three Gaussian spectral 
sensitivities that would provide simultaneously illuminant 
invariant descriptors and accurate estimation of both the 
spectral reflectances of objects and the natural illuminant 
SPD.   

To achieve this objective we have made an exhaustive 
but discrete search to find the best set of three Gaussian 
sensors that would provide this triple use.  We restrict our 
study to a set of three sensors that are Gaussian functions 
of wavelength, all having the same bandwidth, and 
investigate the influence of their spectral location and 
bandwidths, allowing the peak sensitivity of each sensor 
to be at any wavelength from 400 nm to 700 nm in 5 nm 
steps, and the full width at medium height (FWMH) to 
vary from 10 nm to 200 nm.  

In our search both the reflectance spectra (assuming 
that the illuminant SPD is known) and the illuminant SPD 
(we assume that a reference white, with a known spectral 
reflectance, is included in the acquired scene) are 
estimated using the response of the different camera 
channels and linear models with basis functions obtained 
from two PCAs: one applied to the 24 spectral 
reflectances of the GretagMacbeth ColorChecker (the first 
three eigenvectors are shown in Figure 1), and the other 
from a set of 2600 daylight SPDs (see Ref. 16 and Figure 
2).  

We performed an evaluation of the quality of the 
multispectral acquisition system by calculating a good-
ness of fit coefficient (GFC) previously used by other 
authors,16-17 and the root mean squared error (RMSE) of 
the 24 recovered Macbeth ColorChecker spectral 
reflectances as well as CIELAB color differences. The 
same triple evaluation was done over a set of 64 recovered 
natural illuminants SPDs (22 daylight, 21 skylight, 21 
twilight) with a high range of correlated color 
temperatures CCTs (from 3750 K to 100,000 K).   

To test the ability to provide accurate invariant 
descriptors we represent, for each one of the 24 spectral 
reflectances and all the 64 illuminants, the logarithm of 
the ratio between the response of one sensor and other 
sensor (i.e. log (B/R)) versus that of other two sensors (for 
example, log (G/R)).  In case the invariant is accurate this 
representation will generate straight lines (i.e. correlation 
coefficient values close to unity) for each spectral 
reflectance considered (24 in our case) all of them with 
very similar slopes (i.e. with low standard deviations).  

Our exhaustive search shows that the best results are 
obtained when the three sensors have a FWMH of 
approximately 46 nm (remember that we have imposed 
the restriction of three sensors with an equal bandwidth) 
and their peak sensitivities are located in 450 nm, 550 nm 
and 615 nm respectively. Figure 3 shows the spectral 
sensitivities of the three optimal sensors. It is quite 
remarkable the close agreement of these optimal sensors 
with most of commercial cameras peaks sensitivities. 

The results obtained with these optimal sensors are 
shown in Table 1 and Table 2.  Three examples of spectral 
reflectance recoveries are included in Figure 4, three 
illumination SPD reconstructions in Figure 5, and the 
invariant descriptor check in Figure 6. 
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Figure 3. Optimized Gaussian spectral sensor sensitivities. 
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Figure 4. Example of three spectral reflectance reconstructions 
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Figure 5. Example of three natural illuminants SPD recoveries 
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Figure 6. Representation of log (B/R) versus log (G/R) for the 
24 ColorChecker surfaces under the 64 illuminants. 

 
 

Table 1. Spectral reflectance recovery results obtained 
with the optimal sensor over the 24 ColorChecker 
chips. 

 GFC CIELAB rmse 
mean 0.9887 1.7148 0.2147 

standard deviation 0.0147 1.5871 0.1169 
10% percentile 0.9614 3.8751 0.3503 

 
 
Table 2. Natural illumination spectral recovery results 
obtained with the optimal sensor over the 64 SPDs 
tested. 

 GFC CIELAB rmse 
mean 0.9955 0.3294 0.0260 

standard deviation 0.0058 0.3214 0.0446 
10% percentile 0.9868 0.8051 0.0632 
 

Table 3. Invariant results obtained with the optimal 
sensors. 

 slope correlation 
coefficient 

mean 0.6445 0.9751 
standard deviation 0.0207 0.0039 

Conclusions 

Although increasing the number of the channels in the 
image acquisition system will allow better accuracy, here 
we have shown that with only three but well chosen 
sensors it is possible to obtain a polyvalent image 
acquisition system that would provide good recoveries of 
both spectral reflectances and natural illuminant SPDs as 
well as illuminant invariant descriptors. 

The results obtained will be useful for future designs 
of polyvalent multispectral color image acquisition 
systems. 

Our future intention is to increase the number of 
sensors, to reduce the constraints assumed in this paper 
and to consider the influence of noise.  
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