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Abstract  

The spectral-based characterization of inkjet printers is 
often based on a physical description of the printing 
process. The objective of our work is to see whether an 
approach based on the use of neural networks is an 
effective strategy for spectral printer characterization 
without requiring a deep knowledge of the printing 
process. In our experiments, we treat the printers as RGB 
devices, and exploit finite-dimensional linear models to 
reduce the amount of information required to characterize 
them. To select a good architecture, we compared the 
behavior of 15 different networks to compute reflectance 
spectra from RGB digital counts. To test our 
characterization procedure we consider an Epson 890 
inkjet printer using photo quality paper.  

1. Introduction 

The spectral-based characterization of inkjet printers is 
often based on a physical description of the printing 
process, but our experience tells us that often we are 
unable to fit a mathematical model to a given printer. 
Many methods have been proposed for the spectral-based 
characterization of printers, most of them based on the 
Neugebauer equation.1-4 Clearly, the Neugebauer model 
alone cannot foresee with enough accuracy the reflectance 
spectrum of a printed color, as the effects of interaction of 
inks with paper and of interaction among inks are not 
accounted for. Many authors have suggested strategies to 
model mechanical and optical dot-gain, some of them 
trying to understand how the physical placement of each 
ink determines its contribution to the final reflectance.5 In 
these methods the printer driver plays a rule.  

In our work we take an empirical approach, 
summarized as follows: 
• we make no assumption concerning the printer model 

and the printer is treated as an RGB device (the 
printer-driver operations are implicitly included in our 
model); 

• we exploit properly designed and trained neural 
networks as a strategy to approach the complex 
problem of printer spectral modeling; 

• we exploit finite-dimensional linear models to reduce 
the amount of information required to characterize the 
printer spectral behavior.  
 

The feasibility of our approach is proved on an Epson 
890 inkjet printer using photo quality paper. 

The adopted neural networks and reflectance function 
representation are briefly described in Section 2 and 3, 
while Section 4 illustrates the experiments performed. 

2. The Adopted Neural Networks  

The printer model has been approximated by means of a 
feed-forward neural network trained with back-
propagation.6-8 Multiple-layer feed-forward neural 
networks consist of several distinct layers of neurons. The 
first, or input layer, serves as a holding site for the values 
to be processed; the last, or output layer, is the point at 
which the final state of the network can be read. 
Connections can only go from neurons of one layer to the 
neurons of the next layer. During the training phase, back-
propagation provides the prescription for changing the 
weights of any feed-forward network so that it can learn to 
compute a function from a set of input-output data pairs 
(training set). Standard back-propagation is a gradient 
descent technique designed to reduce the error between the 
actual and the desired output of the network.  

Of course the interest does not lie in learning a 
particular training set, but in building networks that can 
generalize, that is that behave correctly in new cases. 
Properly defined networks with biases, an hidden layer 
with sigmoid activation function, and a linear output layer 
are capable of approximating any function with a finite 
number of discontinuities. To improve generalization, 
usually the input data are divided into a training and a 
validation set. In the training procedure, following each 
epoch, the performance of the network is evaluated on 
both the training and validation sets. As long as the 
network performance improves on both the data sets the 
learning is continued, when the error on the training set 
still decreases but the network shows poorer performance 
on the validation set the learning phase is stopped in order 
to avoid network overfitting of the training data.  

3. Reflectance Function Representation  

It has been shown that surface spectral reflectances can be 
expressed as a weighted sum of n linearly independent 
basis functions.9 
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where F
i
(λ) are the basis functions and ci the coefficients. 

The number of basis elements, n, represents the degrees of 
freedom of the linear model. If n is big enough, any 
surface reflectance function can be expressed by the linear 
model. When the applicative domain is well defined, the 
basis functions necessary to represent reflectance spectra 
can be obtained by Principal Component Analysis of a set 
of measured color samples. PCA basis set corresponds to 
directions having maximum variance, the idea being that 
the direction in which the measured data has most variance 
is accounted for. Using PCA, an assumption of Gaussian 
form on the distribution of the data is implicitly forced. 

Given R, a matrix where the columns are reflectance 
vectors, consider X, a translation of R centered around the 
reflectances mean values. If N is the number of 
wavelength samples, the PCA identifies a set of Ñ vectors 
uj corresponding to the direction, in N-dimensional space, 
where reflectance vectors exhibit maximum variance: 
these vectors define an orthogonal basis of a sub-space of 
dimension Ñ. 

The basis set vectors are computed as the first Ñ 
eigenvectors of  
 

S= XXT           (2) 
 
and correspond to the first Ñ largest eigenvalues of S. 

The number of components necessary to accurately 
represent a set of reflectance spectra depends on the 
characteristics of the data set.  

4. Experiments and Results 

We tested our approach using an Epson 890 inkjet printer. 
We adopted a driver that employs Floyd Steinberg 
dithering and used Epson Photo Quality paper. 

The training and validation sets consisted respectively 
of 729 and 125 colors uniformly distributed in the RGB 
color space (Figures 1, 2). The test set consisted of 777 
samples obtained by regular sampling the HSV color space 
(Figure 3).  
 

 

Figure 1. Training set in the RGB color space 

 

Figure 2. Validation set in the RGB color space 

 

Figure 3. Test set in the HSV color space 

 
Spectral measurements have been executed with a 

Gretag Spectrolino, considering values in the wavelength 
range from 400 to 700 nm with a step of 10 nm. 
Reflectances are therefore vectors of 31 elements, in the 
range [0,100].  

The reflectance space dimension has been reduced 
from 31 to 9 throughout PCA. Hardeberg9 considers the 
effective dimension of a PCA basis as the number of 
singular values required to achieve a certain accumulated 
energy. If the required energy is fixed at 99%, for a set of 
reflectance databases, among which the Munsell dataset, a 
number of basis components ranging from 10 to 23 can be 
obtained. In the context of our work, a compromise need 
to be done between the potential accuracy of the 
reflectance representation computed by modeling the 
spectra with the linear combination of PCA basis, and the 
dimension of the problem domain. As the number of 
components grows, the dimension of the solution space to 
be spanned from the neural network increases, therefore it 
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is not appropriate, for our task, to consider a large number 
of basis. Here, a basis of 9 reflectance functions is 
obtained by Principal Component Analysis on the training 
set, with a required energy of 99%.  

We designed a neural network to implement the direct 
transform from printer input digital counts to the 
reflectance functions basis coefficients, and a second 
neural network to implement the inverse transform (Figure 
4).  
 

 

Figure 4. Printer characterization: direct and inverse 
transforms. 

 
To select a good architecture, we compared the 

behavior of 15 different networks in learning the direct 
printer transform. All these networks had 3 input and 9 
output neurons, while the number of hidden layers and of 
units in each layer was varied so that there were about 400 
to 1500 weights to be learned.  

In all the trained networks, the weights associated 
with the network links were initialized randomly with 
values in the interval of [-1,1], and the neuron transition 
function was the logistic mapping on [-1,1], that is,  
 

σ(x)=[2/(1+e-2x)]-1.        (3) 
 

For back-propagation we applied a network training 
function that updates the weight and bias values according 
to the Levenberg-Marquardt optimization and minimizes a 
combination of squared errors and weights to produce a 
network which generalizes well (Bayesian 
regularization).10-12 

The direct characterization neural network is 
composed by an input layer of 3 neurons corresponding to 
an RGB triple, two hidden layers, each composed by 25 
sigmoid neurons, and an output layer of 9 linear neurons 
corresponding to the coefficients of the linear model. The 
inverse characterization neural network is composed by an 
input layer of 9 neurons corresponding to the coefficients 
of the linear model, two hidden layers, each composed by 
25 sigmoid neurons, and an output layer of 3 pseudo 
sigmoid neurons corresponding to a RGB triple. We used 
the Matlab Neural Network Toolbox to implement the 
neural networks.13 

Performance results are reported in terms of color 
difference in CIELAB ∆E*

ab under three different 
illuminants (D65, A and TL84), and root mean square 
error. In Figure 5 (a, b) is shown the diagram for 
computing the performance of the neural networks; error 
statistics for the direct and inverse characterization are 
reported in Table 1 (a, b and c) and Table 2, respectively.  
 

Table 1a. Direct characterization: statistics of color 
distances and spectra differences for the training set 
(m= mean, M= maximum, sdv= standard deviation). 

 m M sdv 
∆E*

ab A 1.42 5.07 0.84 
∆E*

ab TL84 1.55 5.47 0.87 
∆E*

ab D65 1.42 4.78 0.80 
RMS 0.45 1.83 0.24 

 
 
Table 1b. Direct characterization: statistics of color 
distances and spectra differences for the validation set. 

 m M sdv 
∆E*

ab A 1.57 5.47 0.90 
∆E*

ab TL84 1.58 5.47 0.91 
∆E*

ab D65 1.63 4.77 1.05 
RMS 0.62 1.68 0.28 

 
 
Table 1c. Direct characterization: statistics of color 
distances and spectra differences for the test set. 

 m M sdv 
∆E*

ab A 1.55 5.47 0.84 
∆E*

ab TL84 1.81 5.51 0.97 
∆E*

ab D65 1.62 5.05 0.91 
RMS 0.52 2.21 0.34 

 
 
Table 2. Inverse characterization: statistics of color 
distances and spectra differences for the test set. 

 m M sdv 
∆E*

ab A 1.40 7.01 0.92 
∆E*

ab TL84 1.48 8.97 1.04 
∆E*

ab D65 1.41 8.46 0.99 
RMS 0.62 3.31 0.49 

 
 
 
Our experimental results permit us to think that this 

learning method will work for different devices and media. 
This means that, in absence of a satisfactory model, neural 
networks could constitute an efficient way of realizing the 
desired transformation.  
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Figure 5a: Diagram for the direct transform performance 
estimation. 

 

5. Conclusions  

We have defined a method for faithfully approximating the 
printer spectral behavior by means of feed-forward neural 
networks trained with back-propagation. The reflectance 
spectra of most natural occurring objects are smooth 
functions of wavelength; the same is true for spectra 
produced using photography, printing or paints. 
Consequently we exploit finite-dimensional linear models 
to reduce the amount of information required to 
characterize the printer spectral behavior. 

We have presented experimental evidence that the 
designed method is capable of learning quite satisfactorily 
the mapping between printer digital counts and 
corresponding printed colors reflectance spectra. Finding 
the proper network architecture has been a time consuming 
matter, while the learning procedures, depending on the 
number of epochs, have in general required 2 hours of 
processing on a AMD Athlon XP 1700+, 1.47 GHz, 256 
MB of RAM. However, in operation only a few simple 
arithmetic operations are required to produce the color 
mapping.  

 

 

Figure 5b: Diagram for the inverse transform performance 
estimation. 
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