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Abstract 

In this study, color similarity metrics in a spectral space 
are considered. The paper gives a brief overview of several 
existing measures and presents a novel approach based on 
kernel methods. New similarity measures for spectral 
images based upon kernel methods include polynomial, 
Gaussian radial basis function and sigmoid kernels. The 
performance of the methods is tested against the Munsell 
Matte spectral dataset. Kernel methods are compared to 
twelve well-known similarity metrics, i.e. Correlation 
Coefficient, Exponential Similarity, Maximum-Minimum 
methods, etc. Spectral differences of constant Hue, 
adjacent Values and Chromas have been evaluated using 
these metrics. The tests show that the proposed Gaussian 
radial basis function kernel metric performs significantly 
better, compared to the rest of the measures. 

Introduction 

In this paper, a novel kernel based approach to color 
similarity estimation problem is proposed. The methods 
used can be employed in a number of different 
applications, including image compression, electronic 
commerce, archiving etc. 

One of the most popular color similarity metrics is 
Euclidean distance defined in the CIE L*a*b* color 
space.1 It has an advantage of simplicity in understanding 
and realization, however the metric is not efficient. 
Euclidean distance calculates the difference between 
colors not taking into account the angle between color 
vectors, which produces a significant divergence for RGB 
image reproduction. 

Another set of color similarity metrics was proposed 
in Refs. 2 and 3 The set contains twelve well-known color 
similarity measures, created upon the assumption that an 
optimal color similarity metric should take into account 
both the distance and the angle between color vectors. The 
measures are based upon popular distance functions, such 
as Mahalanobis or Hamming distances. All of the metrics 
have been tested in Ref. [4]. It has been shown that the 
absolute-value exponential method was the most effective 
in the task of color differencing.4 

All of the above-mentioned measures have been 
applied to standard RGB or CIE L*a*b* color spaces. 
They can be extended to incorporate spectral data. An 
approach to spectral color differencing has been proposed 
in Ref. [11]. The measures are, in this case: N-dimensional 
Euclidean distance between two radiance spectra and 
Euclidean distance in this space. These measures are 
defined based on two spectral databases: Munsell Glossy8 
and NCS.11 

This measure has been applied to spectral differences 
of constant chroma, adjacent hues and adjacent values in 
Munsell and NCS-databases. Then a three-dimensional 
conical color-space with first three PCA-eigenvectors of 
NCS- and Munsell data as basis vectors has been defined 
and analyzed. The Euclidean distance has been computed 
in this color space. The metric performed significantly 
better than standard CIE L*a*b* DeltaE, CIE94 and 
CIEDE2000 formulae. However, as most of the measures 
built upon Euclidean distance, it suffers from a serious 
drawback of neglecting the angle between color vectors, 
which carries significant information in itself.11 

In this paper, a novel approach of color difference 
estimation, incorporating spectral data, is proposed. The 
color similarity metrics introduced are based on a well-
known pattern recognition technique – kernel methods.5 A 
kernel can be considered an extension of a canonical dot 
product, which in turn, is one of the techniques described 
in Refs. [2] and [3]. Kernel methods applied in this study 
include: polynomial, Gaussian radial basis function (RBF) 
and sigmoid kernels. 

Spectral differences between colors have been 
measured using a Munsell Matte Collection spectral 
dataset,6 against constant Hues and adjacent values of 
Chromas and Values. The results of the measurements 
produced using the kernel-based methods5 have been 
compared to twelve well-known color metrics2,3 extended 
to incorporate spectral data. 

Color Similarity Measures 

Color similarity measures generally take two spectral 
vectors as an input and produce an output on a 0 to 1 
scale. Where 0 means that the colors are “not similar at 
all” and 1 means “identical”.7 

In this paper, a kernel-based approach to color 
similarity is proposed. The performance of these measures 
is compared with the performance of twelve widely known 
metrics.2,3 Kernels can be assumed to be dot products of 
vectors in a certain feature space, meaning that if we have 
two vectors xi and xj in the input domain X, we can 
produce a mapping: 

 
(1) 

 
So the dot product is computed in thus induced feature 
space.5 The kernel similarity measures considered in this 
paper include polynomial, Gaussian radial basis function 
and sigmoid kernels. 

Polynomial kernel similarity measure can be 
presented as follows: 
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where d is the parameter of the sensitivity of the measure, 
xi and xj are input p-dimensional color vectors. The 
similarity functions have a general form of S(xi,xj), the 
arguments are skipped for simplicity in the formulae 
shown in this paper. 

The Gaussian radial basis function kernel has the 
following form: 

 
(3) 

 
 

where σ > 0, σ is the parameter of the sensitivity of the 
function. 

And the sigmoid kernel based similarity metric can be 
presented as follows: 

 

(4) 

where k an ϑ are variable parameters. 
The twelve other metrics are as follows7: 

Metric 1 

 
(5) 

 
 

where θ is the angle between vectors xi and xj 

Metric 2 
 

(6) 
 
 

Metric 3 
 

(7) 
 
 

Metric 4 
 

(8) 
 
 

Metric 5 
 
 

(9) 
 
 

Metric 6: Correlation Coefficient Method 
 
 

(10) 
 
 

 
where 
 

Metric 7: Exponential Similarity Method 
 

(11)       
 
where       is a parameter that is determined 
experimentally. 

Metric 8: Absolute-Value Exponent Method 
 

(12) 
 

where β > 0. 

Metric 9: Absolute-Value Reciprocal Method 
 

(13) 
 

β is determined empirically. 

Metric 10: Maximum-Minimum Method 
 

(14) 
 
 

Metric 11:Arithmetic-Mean Minimum Method 
 
 

(15) 
 
 

Metric 12: Geometric-Mean Minimum Method 
 

(16) 
 
 

Experiment 

The tests of the viability of color similarity metrics were 
performed on Munsell Colors Matte dataset6 (1269 matt 
Munsell color chips). The reflectance spectra had been 
measured by a Perkin-Elmer lambda 9 UV/VIS/NIR 
spectrophotometer in the 380 nm - 800 nm interval with 1 
nm wavelength resolution.8 

The purpose of the experiment was to choose a metric 
that would give comparable values of differences for 
perceptually equally disparate colors, and at the same time 
would account for the changes in Hue, Value and Chroma 
with the whole range of values. Another requirement 
imposed on the measures was the possibility of adjustment 
of the sensitivity of similarity measurements. 

The first set of experiments concerned the possibility 
of color discrimination based on spectral information of 
Munsell colors with constant values of Hue and Chroma 
and adjacent values of Value. The set was chosen so that it 
covers the entire range of Values. Hue was selected to be 
5R, 5B and 5G, Chroma equal to 1, and Values ranging 
from 2.5 to 9. 

The second set of tests was similar to the previous 
one, except that the Values and Hues remained constant, 
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while Chroma was varied. Thus, Hue was set to 5R, 5B 
and 5G, Value to 6, and Chroma ranged from 1 to 14. 

In order to account for the visual uniformity of the 
Munsell color dataset, the input data was multiplied by 
Spectral Luminous Efficiency Function for photopic 
vision9 and illumination factor.10 

Considering the purpose of the whole experiment, the 
results obtained can be divided into several categories. 
First, would come the metrics that gave comparable values 
of differences for perceptually equally disparate colors. 
For that purpose, based upon the experimental settings 
described above, diagrams of the functional relations 
between similarity measures, Value and Chroma have 
been obtained (see Fig. 1). The diagrams show the three 
best metrics from the point of view of the linearity of the 
response given to the inputs. Meaning that the measures 
gave close to linear (to a certain extent) responses to the 
changes in Value and Chroma. The metrics that gave the 
smoothest responses are Metric 1, Metric 8 and Gaussian 
radial basis function, presented in Fig. 1. 

 

 
(a) 

 
(b) 

Figure 1. (a) Similarity vs. Value, (b) Similarity vs. Chroma 
(Metric 1 – red asterisk (second scale); Metric 8 – Absolute-
Value Reciprocal Method blue circles, RBF – green squares) 
for 5R Hue 

 
The second requirement set upon the metrics has been 

the possibility of adjustment of the sensitivity of similarity 
measurements. Looking back at the Eq. 2-16, it can be 
stated that the kernel methods (polynomial, Gaussian RBF 
and sigmoid), exponential similarity, absolute-value 
exponential, absolute-value reciprocal methods poses 
similarity terms, which allow adjustment of the 
measurements. However, the kernel methods provide a 
significantly better control over the whole equation. The 

results of testing of the sensitivity parameters in the 
measures for Gaussian RBF and Metric 8 (absolute-value 
exponent) are presented in Fig. 2. 

 

 
(a) 

 
(b) 

Figure 2. Sensitivity of (a) Gaussian RBF (b) Metric8 (absolute-
value exponent) for 5R Hue, Value 6 

 
A functional relation between the similarity values of 

Gaussian RBF and Metric 8 for different sensitivity are 
shown in Fig. 2, where both β and σ have been varied in 
the range of 0.005 and 0.03. The resulting graphs show 
that the sensitivity of the measures can be varied through 
the use of the special terms in a certain range. However, 
the absolute value exponential method tends to produce 
non-linearities with the growth of the sensitivity value. 
The choice of the Gaussian RBF and Metric 8 functions 
for testing is not accidental. Both of these metrics have 
shown the best results for the smoothness of the response 
of the sensitivity function requirement, thus it would seem 
reasonable to continue comparing them. 

And the final requirement upon the similarity 
measures that has been set is the possibility of accounting 
for the changes in Hue, Value and Chroma with the whole 
range of values. This requirement implies that the 
sensitivity of the metric should be such that it would 
account for the just noticeable by a human eye differences 
in the color. The best results have been produced by kernel 
metrics, Metric 7 (exponential similarity) and Metric 8 
(absolute-value exponential). 
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Considering the results obtained, several metrics 
could be considered as the most promising. The best 
results have been obtained using the Gaussian RBF and 
absolute-value exponential metrics. Both of these 
measures have produced approximately linear responses to 
perceptually uniformly distributed values of Value and 
Chroma (with Gaussian RBF producing the smoothest 
response (see Fig. 1)), at the same time, accounting for the 
change of color vectors with the whole range of values. 
The sensitivity of the function could be adjusted. However 
control over the sensitivity in the Gaussian RBF metric is 
significantly better due to a special term σ introduced into 
the formula. All of that brought us to a conclusion of the 
efficiency of the Gaussian RBF measure in the task of 
color discrimination. 

Another result obtained from the experiments 
performed, is that the response of the similarity functions 
became smoother with the introduction of the efficiency 
curve9 and the illumination factor.10 

Conclusion 

In this paper, color similarity metrics in spectral space 
have been considered. The measures include twelve well-
known metrics created upon well-known distance 
functions, such as Mahalanobis or Hamming distances, 
and a set of novel kernel-based color similarity measures. 
The performance of all of these measures has been tested 
against Munsell Matte spectral dataset.8 The purpose of 
the experiments has been to find a metric that gives 
comparable values of differences for equally disparate 
color, at the same time accounting for the values of change 
in Hue, Chroma and Value with the whole range of values. 
Based on the results presented above, it can be concluded 
that the kernel-based approach to color differencing in 
spectral space is efficient. The performance of the kernel-
based metrics gave results comparable with the traditional 
color similarity measures. Moreover, Gaussian radial basis 
function kernel performed more effectively considering 
the traditional color similarity methods. The response of 
the measure was smoother in the case of both the Value 
and the Chroma change, and the sensitivity of the function 
was greater and could be varied in a more efficient way 
(through the use of a special sensitivity term). 
Furthermore, weighting the input data by the efficiency 
curve9 and illumination factor10 produced a smoother 
output of the similarity functions. 
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