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Abstract 

We present a new adaptation of Retinex to enhance the 
rendering of high dynamic range digital color images. The 
image is processed using an adaptive Gaussian filter.  The 
shape of the filter basis is adapted to follow the high 
contrasted edges of the image. In this way, the artifacts 
introduced by a circularly symmetric filter at the border of 
high contrasted areas are reduced. This method provides a 
way of rendering natural images that is inspired by human 
local adaptation. It is included into a framework that takes 
raw linear images or radiance maps and outputs 24-bit 
images rendered for display. 

Introduction 

Rendering an image that looks “nice” according to human 
preferences is not a trivial task. The image captured by a 
digital device often differs from the human perception of 
the original scene. This is due to the fact that the captured 
image contains the information given by the physical 
values of light while humans tend to perceive the relations 
between objects. Indeed, the human visual system (HVS) 
is a complex non-linear mechanism that determines the 
perceived color by spatial comparisons of color signals 
across a scene and not with absolute values.9,10 Applying a 
similar processing on a captured natural image would 
bring the reproduced image closer to what the observer 
remembers. 

In this paper, we address the problem of rendering 
images representing high dynamic range scenes.  A scene 
is said to have a high dynamic range when the ratio 
between the highest luminance to the lowest luminance by 
far exceeds the one of the capture or output device. The 
dynamic range of such a scene has to be compressed to fit 
the one of the device, which often causes a loss of details 
in areas of low or high illumination. Recent developments 
made possible the capture of high dynamic range scenes.4 
The principle is to capture multiple pictures of the same 
scene with different exposure times. A so-called radiance-
map is built from the acquired pictures. Nevertheless, the 
problem of mapping the radiance map values to the output 
device’s dynamic range remains. 

Our aim is to mimic the processing of the human 
visual system on a scene to render high dynamic range 
images. We take inspiration from an existing model of 
color vision called Retinex and adapt it to a new 

algorithm. We test our method on a set of high dynamic 
range images of natural scenes. 

This article is structured as follows: In section 2, we 
give an overview of Retinex and its adaptations to 
computational models. Section 3 has two parts. The first 
one presents a global framework for rendering high 
dynamic range images. The second one explains the 
Retinex-based method that represents the core of the 
framework. Section 4 presents the results obtained with 
natural images and section 5 contains our conclusion. 

Retinex and Its Adaptations to   
Computational Models 

Retinex theory intends to explain how the visual system 
extracts reliable information from the world despite 
changes of illumination. It was developed by Land and is 
based on a series of psychophysical experiments.9,10 
Retinex determines the perceived color by spatial 
comparisons of color surfaces across the whole image. 
This processing takes place independently in each 
waveband. 

Retinex has been used as a theoretical basis for 
computational models that have been adapted for color 
image rendering. Nevertheless, all of these models have 
drawbacks in their implementation. Three trends can be 
identified among the computational Retinex adaptations.  

A first set of algorithms computes the new value of a 
pixel using subsequent additions of pixel differences along 
a set of random one-dimensional paths.1,11 These methods 
have been adapted toward more efficient computations 
using matrices. The second set of methods computes the 
pixel values using a recurrent iterative formula.3,6,15 They 
provide good quality images but have a major drawback: 
the number of iterations is not clearly defined and can 
strongly influence the final result. If the chosen number of 
iterations is too large, the resulting image converges 
toward the original. The best image is obtained with an 
optimal number of comparisons. Although an on-line 
stopping method exists,7 it is still a difficult task to 
determine automatically the number of iterations. 

A third set of methods are “surround-based”. The 
algorithm of Rizzi et al. computes the value of a pixel 
given the sum of differences between the treated pixel and 
the other pixels in a defined surround.14 The influence of 
surrounding pixels is determined by a weighting function. 
A different surround-based approach is the one of Rahman 
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et al..8,13 Their method computes the enhanced image using 
a weighted sum of single-scale Retinex and a color 
restoration factor. A single scale Retinex is computed by 
subtracting the log-encoded image to a weighted average 
of the linear image. The weighted average is a convolution 
of the image with a low-pass filter, also called a surround 
function. The filter coefficients are determined by a 
Gaussian low-pass filter. 

Common problems of the “surround-based” Retinex 
methods are that the surround has a fixed circular basis and 
that the filter is circularly symmetric; the weights vary 
only radially. Such a fixed shape leads to artifacts around 
high contrasted edges. In a previous article, we proposed a 
“surround-based” method that rendered the image using a 
single filter.12 The filter weights were defined by an 
addition of Gaussian functions. The method presented here 
is an evolution of the previous one. It reduces the artifacts 
by using a filter, whose spatial constant is decreased in 
presence of edges. The aim is to reduce the influence of 
high contrasted areas. 

A New Retinex Adaptation Using An 
Adaptive Filter 

In this section, we propose a framework for enhancing 
color images. This framework can be used to enhance 
traditional 24-bit images as well as to compress high 
dynamic range images that are linear RGB image derived 
from raw format or from multiple exposure technique. The 
first part describes the global framework illustrated in 
Figure 1 and the second part explains the Retinex-based 
adaptive filtering. 
 

 

Figure 1. A global tone mapping is first applied on the input 
linear image. The RGB non-linear image is transformed to a 
YCbCr image and a Retinex-based algorithm is applied on the 
luminance channel Y. The resulting image is transformed back 
to RGB. It is then scaled and displayed on the output device. 

 

The Global Framework 
The first step of this algorithm is to apply a global 

tone mapping on the linear image. This step can be 
assimilated in the first adaptation stage of the HVS where 
an adaptation to global illumination takes place. The non-
linear RGB image is then transformed into YCbCr color 
space. Only the luminance component Y is treated. The 
two chrominance components, Cb and Cr are left 
unchanged. Then, we apply the adaptive filter on the Y 
component. This step is described in the next section. At 

step 4, the treated luminance component and the two 
chrominance components are transformed back to RGB 
color space. Finally, the RGB image is scaled to the output 
device dynamic range using histogram scaling. 

The Adaptive Filter Algorithm Based on Retinex 
In this section, we describe the Retinex-based 

algorithm that is applied on the luminance channel Y. Our 
algorithm takes inspiration from the Retinex theory in the 
way it determines the new pixel value by computing the 
ratio of the treated pixel to a weighted average of other 
pixels in the image. Let the treated luminance component 
be defined as: 

)mask(log')I(logR 10Y10Y −=    (1) 

where log10(I)’Y is the Y component of the non-linear 
image computed at step 2 and transformed into YCbCr 
color space. The last term of equation 1, called the mask, 
is a matrix that represents for each pixel the weighted 
average of its surround. An important point is how this 
surround and its corresponding weights are defined. 

A traditional approach is to define the mask using a 
convolution of the image with a filter.8,12,13 

F*Imask Y=         (2) 

where F is a low-pass filter that is circularly symmetric. F 
is entirely defined by a 1-dimensional function that is 
rotated around the z axis. The 1-dimensional curve is 
usually defined by a simple Gaussian or a composition of 
Gaussian functions. 

Our method uses a filter that is not circularly 
symmetric. The 1-dimensional curve that is rotated around 
the z axis varies with the rotation angle. An illustration of 
a circularly symmetric and a circularly non-symmetric 
filter is given in Figure 2.  

The adaptive filter’s coefficients are defined by 
exploring the surround radially for each rotation angle. 
The radial 1-dimensional function is a Gaussian curve 
whose spatial constant varies as a function of the image’s 
local contrast. The spatial constant has an initial value σ 
given by equation 3. If a high contrasted edge is crossed 
along the radius, σ is divided by 2. 
 

8

))I(sizemax(=σ     (3) 

 

Figure 2. Left: Circularly symmetric filter. Right: Circularly 
non-symmetric filter. 

 
Our motivation to introduce a non-circular filter is 

that it reduces the influence of neighboring areas whose 
luminance produces a high contrast, which would lead to 
artifacts. For example, if a dim area is near a light source, 
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the influence of the light source should be reduced to 
avoid black halos around its contour. Furthermore, it 
seems natural that human local adaptation follows image 
contours to adapt to a local surround that depends on the 
image content.  

Since the filter’s weights and support are adapted for 
each pixel, the mask is computed sequentially pixel after 
pixel. mask(x,y) is the weighted sum of elements in the 
surround of the pixel of coordinate (x,y). 
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where σ is the Gaussian spatial constant that varies along 
the radial direction. In this way, the filter’s support 
approximately follows the image’s high contrast edges. 
These edges are detected using the Canny algorithm.2 The 
Canny method finds edges by looking for global maxima 
of the image’s gradient. It detects strong and weak edges. 
Weak edges appear in the output only if they are connected 
to strong edges. Figure 3 shows the results of a “Canny” 
edge detection on a log-encoded image.  
 

      

Figure 3. Left: Log-encoded image. Right: “Canny” edge 
detection. 

Results 

We applied our method to a set of high dynamic range 
images. This set includes radiance maps that were 
downloaded from the Internet5* and raw linear images 
taken with a Canon Power-Shot G2. 

Results are shown in Figure 5. The left images 
represent the log-encoded originals and the right images 
are the output of our algorithm.† It is visible that applying 
our adaptive filter method on the log-encoded image 
retrieves details in dark areas and increases the contrast in 
bright areas. Nevertheless, our method tends to desaturate 
the image as we apply our algorithm only on the 

luminance channel. A processing of the chrominance is 
still to be introduced. 

 
 

 

Figure 4. Left: Treated image without varying σ. Right: Image 
treated with our method. The varying σ prevents the black T-
shirt from becoming gray. It also keeps the areas surrounding 
the window from becoming too dark. 

 
 
Figure 4 illustrates the effect of varying σ along the 

radial direction. The image on the left is computed with 
our method but using a fixed sigma. The image on the 
right is the image obtained with a varying σ. 

In the future, we want to use a more general 
segmentation than edge detection. This will allow a finer 
definition of the variation of the Gaussian spatial constant. 
We are currently working on improving the definition of 
the 1-dimensional function that determines the filter 
coefficients. 

Conclusion 

We propose a method for rendering natural color images 
that takes inspiration from some aspects of the biological 
vision system. We base our work on the Retinex theory of 
color vision and previously developed Retinex-based 
computational models. Our method computes the new 
intensity value for each pixel, given by the ratio of the 
treated pixel to a weighted average of a surrounding area. 
The novelty of this method is that the surround function is 
not circularly symmetric but its shape follows the image’s 
high contrasted edges. This method allows reducing 
artifacts such as black halos around light sources but 
increases significantly the computational time. 

The Retinex-based method is applied on the 
luminance channel only.  It is embedded in a framework 
that includes pre- and post-processing. The framework 
takes raw linear images and compresses the dynamic range 
so that the rendered image reproduces better what the 
observer remembers of the original scene. 
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Figure 5. Left: Log-encoded image. Right: Treated Image. 
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