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Abstract 

In this paper, we analyze whether Principal Component 
Analysis (PCA) is an appropriate tool for estimating 
spatial information in spatio-chromatic mosaiced images. 
Ruderman et al.1 have shown that the spatio-chromatic 
principal components of cone images contain first spatial 
information, followed by blue minus yellow and red 
minus green. However, their analysis is based on fully 
defined spatio-chromatic images. In case of a reduced 
spatio-chromatic set with a single chromatic value per 
pixel, such as present in the retina or in CFA images, we 
found that PCA is not an appropriate tool for estimating 
spatial information. By extension, we discuss that the 
relation between natural image statistics and the visual 
system does not remain valid if we take into account the 
spatio-chromatic sampling by cone photoreceptors. 

Introduction 

The statistical analysis of natural scenes, as viewed by 
human observers, has given new insight in the processing 
and functionality of the human visual system. Pioneer 
work has shown the relation between redundancy 
reduction in natural scenes and the visual system’s 
receptive fields.2,3 Using gray-scale natural scene imagery, 
Olshausen & Field4 show that representing images with 
sparse (less redundant) code leads to spatial basis 
functions that are oriented, localized and band-pass, and 
resemble the receptive field structures of the primary 
cortex cells. Bell & Sejnowski5 found that sparseness 
could be appropriately formalized using Independent 
Component Analysis (ICA), and show that independent 
components of natural scenes act as edge filters. 

For the case of color, Buchsbaum & Gottschalk6 use 
Principal Component Analysis (PCA) of L, M and S cone 
signals to derive post-receptoral mechanisms: luminance 
and opponent chromatic channels (blue minus yellow, and 
red minus green). Using a simple model of a natural scene 
(flat spectrum), they proved the emergence of post-
receptoral mechanisms from cone signals and propose that 
this de-correlated coding reduces the information 
transmitted to the optical nerve. Later, Attick & Redlich7 
formalized the relation between natural color scenes and 
retinal functions. They show that a retinal filter is 
consistent with a whitening process of the natural scene 
structure when noise is taken into account. 

Finally, the use of hyperspectral images has allowed 
to precisely analyze the spatio-chromatic structure of 

natural scenes and confirmed previous studies.8 Ruderman 
et al.1 show that the principal components of natural color 
images, as sampled by cones, are consistent with post-
receptoral receptive fields and provide reduced signals. 
Using ICA, Tailor et al.9 and Lee et al.10 show also that 
natural color image statistics could account for simple and 
complex color opponent receptive fields in the primary 
cortex. 

From these studies, it seems that post-receptoral 
mechanisms of the human visual system correspond to a 
statistical analysis of natural scenes and provide a 
redundancy reduction. But all these studies do not take 
into account that cone receptor sampling already results in 
a reduced spatio-chromatic set. Doi et al.11 have proposed 
a study where the cone mosaic is taken into account. They 
used a local arrangement of cones (127) from which they 
sampled LMS responses to construct vectors and perform 
ICA analysis. Although this method gives interesting 
results, it is still not realistic for simulating cone sampling 
since only a small part of the entire mosaic is used. Their 
study actually corresponds to analyzing the signal of a part 
of the retina moving along natural scenes. In this paper, 
we propose two novel methods for analyzing an entire 
mosaiced image. 

In the visual system, the three types of cones L, M 
and S form a mosaic such that only a single chromatic 
sensitivity is sampled at each spatial location. Thus, the 
spatio-chromatic signals are already reduced by a factor of 
three compared to fully defined spatio-chromatic signals 
of a natural scene (or color image). 

In this paper, we study whether statistical analysis of 
natural color images sampled with a spatio-chromatic 
mosaic still has a correspondence with the processing of 
the visual system. In this preliminary study, we investigate 
only a simple case. We restrict our analysis to Principal 
Component Analysis (PCA), a second order statistical 
analysis that performs a simple de-correlation of a signal. 
We use RGB color images instead of LMS images 
constructed from hyperspectral data, and we use a regular 
arrangement of RGB samples instead of a random 
arrangement, such as given by the cone distribution in the 
retina. Actually, this experimental set-up coincides with 
many digital camera output, since most use a single CCD 
and a Color Filter Array (CFA) to provide color 
responses. Such systems sample a single chromatic 
sensitivity per pixel and need to interpolate the missing 
information to render color images. Thus, we can 
investigate if a spatio-chromatic analysis is able to help 
the reconstruction of a full spatio-chromatic image. 
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Figure 1. From an image, we construct a matrix that contains 
on each row the spatio-chromatic neighborhood of a pixel. 

 

PCA of Color Images 

The main result of the work of Ruderman et al.1 is that the 
spatio-chromatic PCA analysis of L, M and S responses to 
natural color images, computed from hyperspectral 
images, is consistent with post-receptoral mechanisms. 
We can reproduce this result using RGB images.  

Given an image , ,i j cI , defined by a three dimensional 
matrix of size 3H W× × , we can construct a matrix x  
that contains for each row a column vector composed of 
spatial neighbors of size V  of each pixel for each color 
layer (see Figure 1). Thus, the size of x  is 2( ) (3 )HW V× . 
This matrix, on which we can apply an analysis, can be 
interpreted as containing on each row a representation of 
the spatio-chromatic random variables of a color image. 
We first compute the covariance of x  as follows: 

 ( ) ( )( ) /( 1)
T

Cov HW= = − − −C x x x x x   (1) 

The resulting matrix C  of size 2 23 3V V×  is then 
decomposed into eigenvalues S  and corresponding 
eigenvectors U  of decreasing eigenvalue magnitude: 

 1−=C USU       (2) 

The columns of U  are the eigenvectors and represent 
the basis functions of the transformation. We can 
represent these basis functions as spatio-chromatic 
samples and display their spatial and chromatic properties 
as color images (see Figure 2). 

 
 

     

Figure 2. (a) Image (b) Spatio-chromatic representations of 
eigenvectors of the covariance matrix (with 3V = ). Vectors 
are arranged in rows of decreasing eigenvalue magnitude.   

As shown by Ruderman et al.,1 the first principal 
components are mostly achromatic basis functions, 
followed by blue-yellow and finally red-green. Note that 
the second component in Figure 2 is red. This result 
depends on our particular image; if we had chosen a set of 
RGB images instead of one single image, we probably 
would obtain a more accurate result. 

The matrix U  represents a rotation matrix that 
transforms the original spatio-chromatic space into a space 
where components are de-correlated. If we call y  the de-
correlated matrix corresponding to x, we have: 

( ) ( ) ( ) ( )T T T= ⇒ − − = − − =
C

y xU y y y y U x x x x U S
1442443

 (3) 

Eq. 3 shows clearly that y  is a de-correlated data set. 
It is possible to partially reconstruct an image using only a 
few basis functions. x%  is obtained from x  as follow: 

 1−=x xUdU%      (4) 

d  is a diagonal matrix that contains zero or one 
depending if the corresponding vector is to be used or not. 
As shown in Figure 3, the first principal components of 
spatio-chromatic samples give a good approximation of 
the image. This is particularly true when the neighborhood 
remains small. Also, the achromatic basis functions only 
increase the resolution of the image (compare 3(b) and 
3(c)) when the chromatic basis functions carry the color 
components of spatio-chromatic samples. 
 
 

 

Figure 3. Partial reconstruction of the image. (a) Using only 
the first principal component (CPSNR=19.7) (b) Using 1st and 
2nd (CPSNR = 21.6) (c) Using four (CPSNR =24.4) (d) Using 
five principal components (CPSNR =27.9). 

 
 
We can observe that basis functions seem to be 

decomposed into three categories. For the example of a 
3x3 neighborhood, there are 9 achromatic basis functions, 
9 blue-yellow and 9 red-green. We may ask the question if 
the achromatic basis functions are able to reconstruct 
accurately the luminance information of the original 
image. To test this hypothesis, we can reconstruct the 
image using only achromatic basis functions. We then 
compare this image with the luminance image estimated 
as the mean of R, G and B at each pixel. Using basis 
functions 1, 3, 4, 6-11 (see Figure 2 (b)), we found a 

CGIV 2004: The Second European Conference on Colour Graphics, Imaging and Vision

312



 

 

PSNR of 37.8 dB which is satisfying. Note, however, that 
if we use the first 11 principal components, the PSNR 
equals 64dB, but using the first 9 components (i.e. leaving 
the last two achromatic basis functions out) results in a 
PSNR equal to 44 dB. This means that the chromatic 2nd 
and 5th components are important for the luminance 
reconstruction because they adjust the luminance level in 
the red and purple part of the image. This adjustment 
gives a similar estimate of luminance as adding the 10th 
and 11th achromatic components. 

PCA of Mosaiced Color Images 

A mosaiced color image can be decomposed in luminance 
and opponent chromatic channels as illustrated in Figure 
4. This decomposition keeps the full definition of spatial 
information in the luminance channel. Only opponent 
chromatic channels are sub-sampled according to the color 
mosaic of the image.12 

As we have shown in the previous section, it is 
possible to accurately estimate luminance from the spatio-
chromatic samples of a color image using PCA. We now 
investigate if the method also works in case of a mosaiced 
color image. 

 

Figure 4. (a) Mosaiced color image according to the Bayer 
CFA, decomposed as (b) luminance plus (c) sub-sampled 
opponent chromatic channels.  

 
The construction of the vectors as shown in Figure 1 

is no longer possible because the dimension of the 
mosaiced image with a single chromatic value per spatial 
location is H W× . In other words, a mosaiced color 
image is already a scalar image. To avoid this problem, we 
thus propose to replace the missing colors by values 0 in 
the vector, as illustrated in Figure 5 (a). With this method, 
we keep a trace of the color components of the basis 
functions, since the first third of the vectors correspond to 
red, the second third to green and the last third to blue 
pixels. Figure 6 shows the resulting principal components 
of the mosaiced color image of Figure 4 (a). 
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Figure 5. Method for constructing vectors of neighboring pixels 
in a mosaiced color image. (a) Inserting zeros for missing 
colors (b) Considering a color mosaic as a gray-scale image. 

It can be seen that none of the basis functions have 
achromatic properties, meaning that the reconstruction of 
luminance is not possible. Actually, this is not exactly 
true; the 4th component does not contain the CFA 
structure. Using only this basis function, we can 
reconstruct luminance with a PSNR equal to 22.8. The 
resulting image is a low pass-filtered version of the 
luminance. Increasing the size of the neighborhood does 
not improve the result. 

The reason for this failure is that the achromatic basis 
functions are weighted by the mosaic of color samples. 
For example, the 5th and 6th components of Figure 6 are 
edge functions, similar to the 3rd and 4th basis functions in 
Figure 2 (b), but weighted by the color mosaic. The 4th is 
the only basis function that lacks a color mosaic pattern. 

 

 

Figure 6. Result of the PCA of the mosaiced image of Fig. 4 (a) 
using the method of inserting zeros at missing color positions. 
The basis functions are arranged in rows of decreasing 
eigenvalue magnitude. 

 
We have done the same analysis using only a Bayer 

CFA pattern. That is identical to sampling a constant 
white flat field by the CFA. We found that only three 
components have significant eigenvalues, and they 
correspond exactly to the first three principal components  
of Figure 6. We tested if removing these components 
removes the grid effect due to the CFA, but that is not the 
case. The grid remains for each component except the 4th. 

As shown in Figure 4, luminance has an important 
role for estimating spatial information in a CFA image. 
Considering that the method we have used above does not 
provide a good estimate of luminance, we propose a 
second method for analyzing mosaiced color images. 

As illustrated in Figure 5 (b), we can also consider a 
CFA image as a gray-scale image and construct the vector 
of neighboring pixel as one would do it for a gray-scale 
image. Figure 7 (b) shows the result of the PCA in that 
case. In Figure 7 (a), we illustrate the result of a PCA 
analysis on luminance only, estimated as the mean of R, G 
and B at each pixel.  

The PCA of the mosaic adds basis functions that are 
not present in the analysis of the “luminance only” image. 
By suppressing these functions (i.e. 2, 3, and 6), we obtain 
a PSNR equal to 29.2. Using a 5x5 neighborhood results 
in a PSNR equal to 29.6.  
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Figure 7. (a) PCA on Luminance (b) PCA on a mosaiced color 
image interpreted as a gray-scale image. 

 
Thus, this method better estimates luminance than the 

previous one, and indicates that PCA could be used to 
estimate spatial information in mosaiced color images. We 
will further investigate if this method can follow the 
particular statistics of an image or image set. 

Conclusion 

Principal Component Analysis allows efficient separation 
of the achromatic channel from the chromatic channels in 
color images because the achromatic component follows 
the second order statistics of a particular image. However, 
when using a mosaiced color image, it performs worse 
than a simple gaussian low-pass filter. The mosaic 
“pollutes” the basis functions and prevents good 
reconstruction. This is certainly due to the fact that the 
color mosaic and the color image are not de-correlated, 
and a de-correlation procedure cannot process them 
separately. 

By extension, it seems that the de-correlation stage in 
the visual system, proposed by some authors as being a 
model of retinal processing, changes behavior when 
considering the sampling of a single color per cone 
location. Actually, this retinal sampling is already a 
redundancy reduction of the spatio-chromatic information 
of natural scenes, and might not necessary need a further 
de-correlation process. 

In this study, we have restricted the statistical analysis 
to PCA. As Bell and Sejnowski5 point out, PCA could 
model retinal processing, but for modeling cortical 
processing, Independent Component Analysis is needed. It 
is possible that the color mosaic and the color image are 
independent rather than just de-correlated. In that case, a 

separation of information should be possible, and would 
confirm that the separation of spatial and chromatic 
information arises at a cortical level. 
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