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Abstract

We propose a new method to construct representative spec-
tra from a large database of spectral reflectances. The key
is the optimisation of a Support Vector type functional.
The representatives are constructed such that they sit at
positions of high density in the set of spectra. At the same
time they are constructed to be as orthogonal as possible.
The representatives are expressible as a linear combina-
tion of data samples with positive coefficients. There-
fore, they are positive and physically realisable. We show
the differences of these representatives to representatives
found with well-known methods like principal component
analysis and k–means clustering.

Keywords: reflectance spectra, clustering, Support Vec-
tor algorithm

1. Introduction

The reflectance spectra of objects are not uniformly dis-
tributed. Certain colours appear in small variations very
often, whereas others are rarely seen. But which colours
or spectra are the typical ones, and how can we represent
them ? Using a database of reflectance spectra we propose
a method to find representatives. Other researchers have
already investigated similar questions, but with far smaller
databases [6, 11, 3, 7, 4]. As database we use the SOCS
database [1], a collection of about 50′000 reflectance spec-
tra with wavelength in the interval between 400 nm and
700 nm at a 10 nm stepsize. The samples in the database
are processed as follows: First, we multiplied the spec-
tra with a D65 daylight illuminant. The resulting spectra
were normalised in the L2-norm. Therefore, the processed
spectra sit on a hypersphere. The normalised data is used
because we are primarily interested in chroma. From our
analysis we cannot draw conclusions about colour inten-
sity. Figure 1 shows a boxplot of the preprocessed samples
in the database. The box extends from the first to the third
quartile. The dividing line of the box is the median. The
whiskers extend to the extreme values.
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Figure 1: A boxplot of the spectral data. The box shows the
median, the first and third quartile of the normalised reflectance
spectra, see text. The whiskers extend to the extreme values.

2. Orthogonal decomposition

A standard method to construct representative vectors is
to compute the principal components. Figure 2 shows the
mean (m) together with the first three principal compo-
nents (1-3). A disadvantage of the principal components
is that they are not representative in the sense that they
can not be interpreted as prototypes or typical spectra. We
propose a method to find representative spectra, which can
be interpreted as prototypes of the dataset. The rest of the
paper is organised as follows. In the next section a new al-
gorithm is proposed to find representative vectors or pro-
totypes of spectra. As an illustration, this algorithm is first
applied to the solution of a toy problem. Then it is applied
to find representative vectors of the SOCS database. In
section 4 we project the data and the representative vec-
tors in a two–dimensional subspace to illustrate important
features of our solution. Finally, the question of how many
representatives are needed is addressed.
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Figure 2: The mean together with the first three principal com-
ponents.

3. Finding representatives

Let us explain how we find representative vectors. Fig-
ure 3 shows schematically the situation: The small circles
show the preprocessed data samples. The data samples are
normalised, thus they sit on a high–dimensional sphere.
The idea is to find m representative vectors

w1, ..., wm, (1)

which point in direction of a high concentration or high
density of data samples. A cost function is defined, which
depends on these m vectors, such that the minimum of
the cost function is the desired representation. To define
the cost function we proceed as follows: Associated with
each representative vector is a subset of the samples, a
cluster. We use indicator variables λc,i ∈ {0, 1}, indicat-
ing if sample xi belongs to cluster c, then λc,i = 1, or not,
λc,i = 0. Each sample belongs maximally to one cluster.
In addition we define a margin ρc for each cluster, and a
hyperplane hc given by

hc = {x|wc · x− ρc = 0}. (2)

The hyperplanes are shown in figure 3 by the dashed lines.
The hyperplane for cluster c is estimated such that the

samples belonging to cluster c are on the far side of the
hyperplane, far from the origin. We allow a fraction ν
of samples to be on the side of the origin, which we call
the wrong side. Here, ν ∈ [0, 1] is a parameter. As the
distance from the hyperplane to the origin increases, the
area of the sphere on the far side of the hyperplane gets
smaller. Therefore, if the hyperplane can be chosen far
away from the origin, the points in the cluster are highly
concentrated. The distance of the hyperplane from the ori-

w2

w1

Figure 3: The idea of how to find representative vectors, see text.

gin in measured by ρc/||wc||. By minimising

Ωc =
1
2
||wc||2 − ρc, (3)

we maximise the separation of the hyperplane from the
origin, see [9]. An additional term, the empirical risk, is
added to control the samples of cluster c sitting on the
wrong side of the hyperplane. The empirical risk is

Remp,c =
1

νlc

∑
i

λc,i

[
wc · xi − ρc

]
−, (4)

where
[
·
]
− is the function that maps a real argument x to

max(0,−x). Here, lc is the number of points belonging to
cluster c, which is chosen in advance. The empirical risk
measures how much the samples xi belonging to cluster c
are sitting on the wrong side of the hyperplane hc. To have
representative vectors, which are as orthogonal as possi-
ble, a penalty term is added. The penalty term is

Ωdiv =
1

m− 1

∑
c<d

wc · wd, (5)

penalising two representative vectors pointing in a similar
direction, that is, having a large scalar product. In sum-
mary, we consider the constraint optimisation problem

minimise Ωdiv +
∑

c

(Ωc + Remp,c) (6)

subject to λc,i ∈ {0, 1},
∑

i

λc,i = lc (7)

We solve the optimisation problem by using a stochas-
tic coordinate gradient descent method. In more detail, it
is the following two–step procedure. The algorithm pro-
ceeds by alternating the two steps, until in has converged
or a maximal number of iterations was performed. We re-
call that the variables are the cluster indicators λc,i, the
vectors wc and the margins ρc. Our method is similar
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in spirit to the k–means algorithm [5]. Mathematically
speaking, it is a coordinate descent: In the first step, we
fix the variables λc,i and ρc and update the variables wc

with a stochastic gradient descent. In the second step, we
fix the variables wc and update the variables λc,i and ρc.
Because the variables λc,i are binary, we do not use a gra-
dient method but rather we will see that we can directly
guess a close to optimal point. Next, we present the two
optimisation steps. For more details and calculations we
refer the reader to [2].

Step one: Let the variables λc,i and ρc be fixed. We
will compute the partial derivative of the cost function (6)
and perform an update

wc ← wc − η∂wc
(Ωdiv + Ωc + Remp,c), (8)

with learning rate η. For efficiency, we do not use all the
data to estimate the empirical risk, but rather use only a
subset of s examples. We draw these examples randomly
from our dataset. Let us denote the set of chosen examples
at step t by St. A short calculation gives the update rule

wc ← (1−η)wc−η
1

m− 1

∑
d6=c

wd+η
m

νs

∑
xi∈St

θc,iλc,ixi.

(9)
Here θc,i ∈ {0, 1} is zero if wc · xi > ρc and 1 otherwise.
The value ν is the relative number of points in each cluster,
which are on the wrong side of the margin. The integer s
is the number of examples in St. The factor m/νs in front
of the last term in (9) is just one over the expected number
of examples in St, which belong to cluster c and are on the
wrong side of the margin.

Step two: In this step we fix the variables wc and op-
timise with respect to the variables λc,i and ρc. The algo-
rithm will proceed by first choosing good values for the
indicators λc,i and then given these values, determine the
optimal margins ρc.

To motivate the choice of good values for the indica-
tors, we first look at the optimal value given the binary
values λc,i. Thus, suppose each point xi is assigned to
one cluster according to (7). Setting the optimal margin
ρc is now an independent problem for each cluster c. The
optimal values of the margins are set as follows. For a
cluster c define ac,i = wc · xi for all xi belonging to c and
sort the values ac,i in ascending order,

ac,j1 ≤ ac,j2 ≤ ... ≤ ac,jlc
. (10)

Then we set

ρc = ac,jn
, with n = dνlce. (11)

Hence, ρc is sitting at the ν–quantile of the empirical dis-
tribution of {ac,j1 , ..., ac,jlc

}.
From the above we see that suitable values for the in-

dicators λc,i are values that allow large values of ρc, be-
cause the margins have to be maximised by (3). According
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Figure 4: The creation of the toy data. Two randomly generated
spectra starting from the same interval. The width of the spec-
tra is randomly chosen. The height is adjusted such that each
spectra has unit length.

to (11), we should choose points xi to belong to cluster c
if their dot product with wc is large. For this we chose a
simple strategy. We iterate over all clusters. For the first
cluster we calculate the values ac,i = w1 ·xi for all points
xi and select lc points with a maximal value of ac,i. For
these points we set the indicator λ1,i = 1. Now suppose
the indicators for clusters 1 to c− 1 are set. Then for clus-
ter c we calculate the values ac,i for all points xi, which do
not already belong to one of the previous clusters. Again,
we set the indicators λc,i = 1 for the points xi with maxi-
mal values ac,i. After the indicators are set for all clusters,
the optimal margins ρc are determined according to (11)
and step two is finished.

From the point of view of efficiency, we can adjust the
complexity of the first step by choosing a suitable fraction
of the data to estimate the empirical risk term. In step two,
all the scalar products of the data with the vectors wc have
to be computed. Therefore, the complexity of one iteration
is of the order of ml.

The functional we optimise is a Support Vector type
functional, see [10]. As solution we find the representative
vectors w1, ..., wm, the margins ρ1, ..., ρm, and the indica-
tors λc,i. By construction, the vectors wi are expressible
as a linear combination of data samples with positive co-
efficients and are therefore positive. As a remark we note
that the scalar product in the formulation of our optimisa-
tion problem can be replaced by a kernel. Thus, our algo-
rithm can naturally be generalised to a kernel algorithm,
[10].

Before we apply the algorithm to the dataset of spec-
tral reflectances in subsection 3.2 a toy problem is dis-
cussed in the next subsection.

CGIV 2004: The Second European Conference on Colour Graphics, Imaging and Vision

277



re
fle

ct
an

ce

400 450 500 550 600 650 700

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

wavelength

Figure 5: The toy dataset consisting of 20 samples for each of
the three starting intervals (solid, dashed, dashed–dotted lines).

3.1. Toy example

Let us first apply our algorithm to the following toy prob-
lem. We try to find representative vectors in an artificially
created dataset. The data consists of a set of artificial spec-
tra, where each spectra fI is equal to a constant c on the
interval I and zero otherwise,

fI(x) =

{
c if x ∈ I

0 otherwise.
(12)

The constant c is chosen such that ||fI || = 1. Starting with
an interval I1 a new interval I is generated by moving the
interval boundaries by random values σa, σb. In detail, if
the starting interval is I1 = [a, b] then

I = [a + σa, b + σb] (13)

is a randomly generated interval with samples σb, σb drawn
from a Gaussian distribution.

Figure 4 shows two artificial spectra generated ran-
domly starting from the same interval. In this manner,
choosing three adjacent intervals I1, I2, I3, twenty ran-
domly generated spectra are created starting with each of
the three intervals. Figure 5 shows the whole dataset.
Next, let us forget for the moment what we know about
the construction of our toy data. We try to recover the
structure in the dataset. First, the principal components
are computed, second, our algorithm is applied. Figure 6
shows the mean and the first three principal components.
It can be seen that the principal components do not visu-
ally reveal the structure underlying the dataset. Using our
algorithm three representative vectors are computed. They
are shown in Figure 7. The representative vectors reveal
the structure in the toy data. Each of them represents the
set of artificial spectra generated starting with the same

400 450 500 550 600 650 700

−
0

.4
−

0
.2

0
.0

0
.2

wavelength
re

fl
e

c
ta

n
c
e

m

2

1

3

Figure 6: The mean (m) and the first three principal components
(1-3) of the toy data.
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Figure 7: The three representative vectors of the toy data found
by our algorithm (solid, dashed, dashed–dotted lines).
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Figure 8: Solution for m = 3: shown are the three representa-
tive vectors w1, .., w3.

interval. By definition of the algorithm, the representative
vectors are not constraint to be pairwise orthogonal. In our
example, relaxing the orthogonality constraint is impor-
tant. Nevertheless, the penalty term (5) yields an almost
pairwise orthogonal solution.

3.2. Representative Vectors of SOCS data

Figure 8 shows the representative vectors of a solution for
m = 3. The parameters used are lc = 0.6 ∗ l/m, for
all c, where l is the number of samples in the database,
and ν = 0.2. We tested how good we can reconstruct the
spectra from the projections on three representative vec-
tors. We found a mean squared error of 2.6%, compared
to the optimal method, a reconstruction from the projec-
tions on the first three principal components, with a mean
squared error of 0.9%. We note that for the latter method,
one has to keep not only the three principal components,
but the mean as a fourth vector, too. Reconstruction using
the mean and first two principal components yields a mean
squared error of 2.0%.

4. Projection on three representatives

In the case of three representatives, we can easily visu-
alise the situation. We normalise the three representatives
w1, w2, w3 and proceed as follows: We map a point x into
a three dimensional subspace by

x 7→ x′ = (x · w1, x · w2, x · w3). (14)

As we are interested by the relative amount of the coordi-
nates (x · wi) only, the vector x′ is divided by its norm,

x′ 7→ x′′ = (x′′1 , x′′2 , x′′3) =
x′

||x′||
. (15)
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Figure 9: A density plot of the projections onto three representa-
tives.

The point x′′ sits on the surface of a two dimensional
sphere, and we project the point from the sphere into the
plain by introducing coordinates r, s defined by

r = −
√

3/2x′′2 +
√

3/2x′′3 (16)

s = x′′1 − 1/2(x′′2 + x′′3). (17)

Figure (9) shows a density plot of the samples in the database.
The points show the three representative vectors found. It
can be seen how the vectors sit at positions of high den-
sity. As a comparison, we plotted three vectors found with
a k–means algorithm. Compared to our representatives,
these vectors sit at locations of lower density.

5. How many representatives ?

In our algorithm the number of representatives has to be
chosen in advance. Naturally, the following question arises:
how many representatives have to be chosen ? Many re-
searchers already addressed this question [6, 11, 3, 7, 4]
and gave various answers, depending on the criteria used.
Our method is different and the dataset larger, therefore
our result can only be partially compared with others. We
ran the algorithm for m = 20, and then we checked how
different these 20 representatives are. Difference is mea-
sured by a squared L2–difference. Figure 10 shows the
result. Plotted is for each representative wc the minimal
difference,

min
d6=c
||wc − wd||2, (18)

to another representative. The representatives are rear-
ranged, in descending order. There are clearly visible jumps
in the plot. This can give some indication of how many
representatives to choose to well represent the dataset. We
can set a threshold , for example at 10%. In other words,
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Figure 10: For 20 representatives the plot shows the squared
difference to the closest other representative.

we take only those representatives, which differ more than
10% from each other. From the plot we see that we should
retain 3 representatives. Setting the threshold at 5% tells
us to retain 8 representatives. This is consistent with find-
ings by others [6, 11, 3, 7, 4].

6. Discussion

We proposed a new method to find representative spec-
tra in a large collection of reflectance spectra. We inter-
preted and compared our result with well-known methods
like principal component analysis and k–means. In recon-
structing the samples from the projections on the repre-
sentative vectors, the reconstruction error is larger than it
is using the optimal principal component vectors. But un-
like the principal components, our representative vectors
have a direct interpretation as prototype colours. They are
physically realisable and could be used to construct a test
target, that is, a small collection of typical colours, like the
MacBeth Color Checker [8].

Geometrically, our representatives sit at points of high
density in the dataset. Therefore, they are more prototype–
like than representatives found with a k–means algorithm.
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