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Abstract

A mobile seven-channel multispectral camera with optical
bandpass filters has been realized. The filters are arranged
in a filter wheel rotating between lens and greyscale sensor
(CCD). The time required for a complete multispectral ex-
posure was brought down to less than one second. The main
part of this paper deals with the algorithms applied to re-
construct spectral color stimuli information from the seven
sampling values of the camera. Different methods have been
simulated and tested. Results are presented. As the camera
is handy enough to offer mobile applications, the illuminant
problem for the use under varying light conditions has been
studied. Finally, a solution for geometric inter-channel dis-
tortions due to glass filters within the optical path inside the
camera is pointed out.

Introduction

A variety of multispectral cameras with four or more spec-
tral channels have been proposed and realized [10]. Channel
responsivity curves vary from narrow-band gaussian type to
specifically adapted distributions. An advanced concept [9]
for professional quality color reproduction uses 16 channels
with gaussian transmission distribution, realized by optical
interference filters. The filters cover the range of the visible
light equidistantly from 400 nm to 700 nm. A halogen lamp
is used as light source. The filters are arranged in a filter
wheel that rotates between the lamp and the object being in-
serted into a drawer. With this setup it is possible to record
the spectral reflectances of surface colors very accurately re-
sulting in remarkably low color distance CIE ∆E94 between
the original color and the reproduction. Total recording time
ranges in the order of minutes.

New seven-channel camera

To close the gap between the high quality 16-channel cam-
era technology on one hand and the common three-channel
technology on the other hand, a seven-channel camera cov-
ering the range of almost all natural colors has been realized.

It consists of an industrial grey scale camera (1029∗ 1292
pixels, 8 bit) with a filter wheel rotating between CCD chip
and objective. The wheel contains seven gaussian band-
pass filters, which are arranged equidistantly from 400 nm
to 700 nm with a half-power bandwidth of 40 nm (fig. 1).
The time required for a complete multispectral exposure is
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Figure 1: Gaussian type channel sensitivities of multispectral cam-
era covering the range of visual light from 400 nm to 700 nm.

less than one second, due to the fact that the filter wheel ro-
tates continuously during a multispectral exposure. Though
recording of moving objects is not yet possible, a signifi-
cant decrease in recording time is realized compared to other
multispectral cameras that casually need exposure times in
the size of minutes. Due to the small dimensions of the cam-
era, it additionally provides the advantage of mobility. Ac-
cordingly, it is not restricted to the use in a studio but can be
taken outside, too. As outdoor light conditions are subject to
fluctuations, a spectral reconstruction method has been de-
veloped that is virtually light independent. Simulations with
different illuminants show good results.

Camera Modeling

On one hand, the creation of an exact spectral reconstruction
function can be done based on the physical transfer function
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of the camera [4, 5]. In a second approach, the camera can
be regarded as a black box. So first, a model of the camera
has been implemented that provides each channel’s output
signals corresponding to any given spectral stimulus at the
input.
All spectral data (filter transmissions, sensor sensitivity, il-
luminant and the object’s spectral reflectance) are therefore
sampled between λmin = 350 nm and λmax = 750 nm (81
samples), which reduces the integrals to matrix and vector
operations. In the end, there is a camera model (matrix H)
that predicts the seven output signals as function of the spec-
tral illuminant, the object’s spectral reflectance and expo-
sure time. Nonlinear effects (e.g. CCD distortion and black
offset) are added and result in good agreement between the
model and the real camera’s behaviour.
The camera’s output signals basically have an integral char-
acteristic. This results in the fact, that an infinite number of
different color stimuli lead to the same channel signals at the
camera’s output. Secondly, the transfer function cannot be
analytically inverted: numerical calculations are required in
order to obtain the original spectral stimulus from the cam-
era signal.

Spectral Reconstruction

Having defined a camera model H, the inverse transfer
function Hinv is calculated in the next step, which cannot be
done analytically due to the fact that the matrix H is not a
square matrix. Several methods aiming at a numerical in-
version of H were implemented and tested: pseudo inverse,
regression, Wiener inverse and optimized Wiener inverse
[3]. These four methods were compared by presenting a
spectral data set of a large number of reflectance spectra
of natural colors (like Vrhel’s set [1]) to the model and
calculating ∆E94 between the original and the reconstructed
colors. The ColorChecker DC has been recorded as well
by the camera and results of the reconstructions have been
compared with high accurate spectral measurements of the
ColorChecker taken in advance.
The simple pseudo inverse H+ of the transfer function H
shows the poorest performance (see Fig. 2a for spectral
reconstruction considering a yellow color as example). All
of the reconstructed spectra suffer from a strong ripple
content resulting from the seven gaussian type channel
sensitivities. Therefore, this method is not adequate for
spectral reconstruction, as natural spectra usually have a
flat distribution. Nevertheless, the Lab color values derived
from these spectra are better than initially expected, because
over- and undershoots cancel out each other under certain
conditions when calculating XYZ tristimulus values.
In order to find an inverse transfer function H inv using
regression (Fig. 2b), a representative spectral data set F
(like Vrhel’s set) is presented to the camera model and
all channel signals Y are measured. This way a transfer
function H is obtained that regards the camera as a black
box, with no physical characteristics of the camera being
invested. The pseudo inverse H+ of this function H can
be derived from F and Y. Very good reconstruction results

are generated. Nevertheless, an important disadvantage of
this method must be seen in the fact that the spectral data
used to gain the inverse transfer function is preliminarily
fixed, so the inverse transfer function is trained on this set.
As a consequence, spectra from the utilised data set are
reconstructed very well, whereas other spectra tend to be
reconstructed badly. This means that in order to guarantee
good reconstruction results, information about the expected
spectra is needed in advance [6, 7, 8]. This can be the case
when digitizing paintings, where the color pigments can
be measured spectrally beforehand. But, unfortunately,
this method is not practical in order to obtain a generally
useable inverse transfer function.

The third reconstruction method utilizes the Wiener inverse
(Fig. 2c), which takes into account that natural spectra
usually have a quite flat distribution. Thus, such spectral
distributions own a very high auto correlation coefficient
(ρ ≈ 0.99). The Wiener matrix, which is part of the inverse
transfer function, contains this coefficient and higher orders
of it. It must be noted that this inverse transfer function is
not trained on a special spectral data set. In fact, the original
physical transfer function H is invested. This characteristic
suggests the good general usability of the inverse function,
as there is no spectral data needed for training. Reconstruc-
tions tend to be good over a wide variety of test spectra.
A variant of the Wiener inverse can be obtained by calculat-
ing the correlation coefficients ρ of the Wiener matrix from
a spectral data set (Fig. 2d). This way, the inverse transfer
function will be optimized to work on this data set. Similar
to the regression, this method will produce good results, if
there is a priori knowledge about the expected spectra. But,
as well, it suffers from the shortcoming that other spectra
not showing the same degree of autocorrelation potentially
are reconstructed badly.
Table 1 shows average and maximum CIE ∆E94 achieved
by the different reconstruction methods. Figure 3 shows the
corresponding distributions.

Table 1: Comparison of CIE ∆E94 color distances between
original and reproduced colors achieved by different spectral
reconstruction methods for ColorChecker DC. Reconstruction
methods are denoted as follows: a) pseudo inverse, b) Wiener
inverse with ρ = .99, c) Wiener inverse, trained on spectral
data set, d) regression.

camera simulation
method ∆E94,av ∆E94,max ∆E94,av ∆E94,max

a) 2.67 6.24 2.45 5.08
b) 1.04 7.34 .517 1.86
c) 1.1 7.96 .501 2.63
d) .864 7.66 .376 1.58
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a) pseudo inverse b) Wiener inverse
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c) Wiener inverse, trained on data set d) regression

Figure 2: Comparison of four reconstruction methods considering a yellow color as example.
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Figure 3: Histograms of CIE ∆E94 values between original and reproduced colors achieved by different spectral reconstruction methods
for ColorChecker DC. The very high, single maximum value of about 8∆E94 results from a dark, black color tone, where the signal-to-
noise-ratio is very bad.
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Effects of different illuminants on
spectral reconstruction

The color stimulus φλ recorded by the camera consists of
the inseparable product of both the illuminant S (λ) and the
object’s reflectance spectra β(λ) . The camera signal yi of
channel i can be described as

yi = ki

� λmax

λmin

S (λ)β(λ)o(λ)τi (λ)E (λ)dλ (1)

with o(λ): spectral transfer function of lens system, τ i (λ):
transmission distribution of filter i, E (λ): sensitivity of
CCD, λmin = 350 nm, λmax = 750 nm. In case the spectral
distribution of the illuminant is known (e.g. in a studio),
the reflectance spectra can be easily calculated by dividing
the estimated color stimulus ̂φλ by the illuminant’s spectral
distribution S (λ). Yet, the camera proposed in this paper is
intended for mobile use, so, as light conditions are subject
to change, no information about the illuminant can be taken
into account during spectral reconstruction. Consequently, a
method had to be developed in order to minimize the effect
of illumination on spectral reconstruction.
The basic assumption is that the illuminant spectra S (λ) is
relatively flat, so it can be considered constant within each
of the seven wavelength sections defined by the filters. Be-
ing no function of wavelength λ it can be written in front of
the integral as a constant multiplier Si. The new equation for
the channel signal yi is

yi = kiSi

� λmax

λmin

β(λ)o(λ)τi (λ)E (λ)dλ. (2)

The set of amplification constants Si can be measured sim-
ply by recording the white reference, whose spectral char-
acteristic ideally should be βwhite (λ) ≡ 1. In this case, all
factors in the integral are known and can be calculated as
function of the camera model, which is important for simu-
lation purposes. The set of constant factors Si will then be
used to rescale the set of image separations of the recorded
object. The result is a simulation of recording with equal
energy white as light source. Any given light source can be
used afterwards as illuminant during spectral reconstruction.
The normalised channel signal ỹ i finally is

ỹi = ywhite,i

� λmax
λmin

β(λ)o(λ)τi (λ)E (λ)dλ
� λmax

λmin
βwhite (λ)o(λ)τi (λ)E (λ)dλ

. (3)

In case of ideally flat light distributions S (λ) there is no
reproduction error at all, but it must be annotated that this
method is slightly erroneous, if the light distribution con-
tains peaks. Anyhow, simulations with different illuminants
(see table 2) showed that this error is virtually independent
from the illuminant and negligible compared to the benefit
of light independent multispectral exposures.

Geometric inter-channel distortions

As the filter wheel is arranged within the optical path
inside the camera, i.e. between CCD sensor and lens, there

Table 2: Influence of different light sources on aver-
age ∆E94 between original and reconstructed colors.
Illumination during exposure has virtually no effect on
spectral reconstruction.

illuminant ∆E94,av

A 0.641
B 0.344
C 0.344

D65 0.347
E 0.388

Xe 0.367

is a geometric influence on the optical transfer function
in addition to the spectral filter characteristic. Due to a
variation of filter thickness and the virtual impossibility to
arrange all filters absolutely coplanarly in the filter wheel,
there are geometric translations and focus differences
between the channels. The geometric translations ranging
up to +/-5 pixels in both x and y direction lead to parasitic
rainbow colors on objects’ edges in the reconstructed color
image. Unfortunately, this distortion is neither spatially
constant over one channel nor constant between the images
of the same channel of different objects. In fact, it depends
from object distance, camera zoom and aperture, so that a
correction has to be recalculated by the software for each
multispectral exposure.

Figure 4: Translation vectors are determined for a set of subre-
gions. Orientation and length vary throughout the image.

To achieve this, the image is initially divided into a set of
subregions, in order to take into account the nonuniformity
of the translation vector over the image. One of the pictures,
usually the one containing the best signal-to-noise-ratio, is
defined as reference. Translation vectors are now calculated
individually for each region for all other pictures (fig. 4).
The calculation is based on a correlation analysis between
the reference and the translated sample region. High corre-
lation coefficients (close to 1) indicate a good congruency of
reference and sample. A downhill type algorithm is used for
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finding the coefficient’s maximum as function of translation
vector for each picture region.
Finally, a vector array with the same size as the original im-
age is produced. It contains the calculated translation vec-
tors for the selected regions. The vectors for the rest of the
pixels are generated by bilinear interpolation. In order to
gain best results and completely abolish rainbow edges, sub-
pixel translations turned out to be indispensable.
Also, a good contrast within the analysed region of the im-
ages is needed, otherwise fixed-pattern-noise will possibly
generate wrong geometric fits.

Conclusion

A mobile seven-channel multispectral camera has been re-
alized and simulated on a computer. Different methods of
spectral reconstruction based on the seven color samples
were implemented, tested and compared. The ColorChecker
DC has been used for these purposes. The color distance
∆E94 between the original and the reconstructed colors was
used as a quality criteria for the spectral reconstruction. The
comparison showed that the Wiener estimation produces the
best results, if no a priori information about the expected
spectra is available. If this information existed, regression
turned out to be the most suitable reconstruction method.
A convenient method was shown that allows multispectral
images to be taken without any knowledge about the illumi-
nant used during exposure, as long as the spectral distribu-
tion of the light source is reasonably flat. Also, a solution for
correcting geometric inter-channel distortions was given.
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