
Sensitivity Curve Approximation using
Linear Algebra

D. Paulus1 , V. Hong1 , C. Idler1 , J. Hornegger2 , L. Csink3

Universität Koblenz-Landau1

Computervisualistik
Universitätsstr. 1

56070 Koblenz, Germany
paulus@uni-koblenz.de

Lehrstuhl f. Mustererkennung2

(Informatik 5), Martessstr. 3
Universität Erlangen-Nürnberg

91053 Erlangen, Germany
joachim@hornegger.de

Budapest Polytechnic3

John von Neumann Faculty of
Informatics

H-1300 Budapest, Hungary
csink@nik.bmf.hu

Abstract
Calibration of color cameras requires that a cali-
bration pattern is recorded and color responsivity
curves are estimated from the recorded data. Very
often, these curves are sampled at discrete wave-
length, so that the calibration problem can be writ-
ten as a system of linear equations. The solution of
the – usually overdetermined – problem is subject to
a constrained optimization problem, as these curves
need to have a certain shape. In this article we apply
different methods to incorporate constraints into the
estimation problem while still keeping the problem
linear.

1. Introduction

Color cameras have sensors that have unknown re-
sponsivity functions. The responsivity of typical
CCD chips for red, green, and blue varies over the
range of wavelenghts λ. The sensors may even vary
amongst the same type as the responsivity curves
depend on the parameters of the production. There-
fore, color calibration of a camera requires the esti-
mation of color responsivity curves. If the respon-
sivity functions are known, color pixels can be re-
mapped to values of a standard observer. Accu-
rate color measurements require such a mapping. In
many cases, accurate color values might increase re-
sults of image analysis.

The goal is to compute these parameters auto-

matically. Usually, this is done under known illumi-
nation with a color checker and spectrometric mea-
surements. Several unknown parameters influence
the image generation process. It is usually assumed
that the irradicance E(λ) is known. A calibration
pattern1 with known reflectivity ρ(x , λ) at spatial
position x is recorded and color pixel vectors corre-
sponding to the position x will be used to set up an
equation system for the unknown influence of the
sensor (Figure 1). The function ρ models the differ-
ent color patches; as we assume a Lambertian cali-
bration pattern, the argument x models the variation
of the color patches and the argument λ accounts for
the different reflectivity of the color patches with re-
spect to the irradiation.

As the computation of the unknowns is an over-
determined system with constraints, [1] uses non-
linear optimization to compute the responsivity func-
tions. [2] reports on several approaches and uses
Fourier basis functions to approximate the respon-
sivity curves. In the following we will derive a lin-
ear approximation of calibration parameters. We
extend our theoretical approach [8] by the experi-
mental work of [5] and adopt the notation of [4].

1For example the Gretag McBeth ColorChecker, shown on
the left in Figure 1
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Figure 1: Sensor, reflectivity, and measurements

2. Device Responsivity Model

The K sensors per pixel, typically red, green, and
blue for a color camera, have spectral responsivity
curves Rk(λ), (k = 1, . . . , K). Any sensor channel
k thereby records light intensity at position x using
the following energy distribution:

sk(x ) =

∫

∞

0

E(λ) · ρ(x , λ) · Rk(λ) dλ (1)

As noted in [1], the discrete version of (1) is of-
ten written as a sum of L = 31 samples

sk(x ) =
L

∑

λ=1

Eλ · ρλ(x ) · Rk,λ · ∆λ . (2)

The vector E = [Eλ]λ=1,...,L denotes the discrete
spectral energy distribution for illumination,

ρ(x ) = [ρλ(x )]λ=1...L

denotes the discrete spectral reflectance at position
x , and the matrix R = (Rk,λ)

k=1,...,K,λ=1...L
de-

notes the discrete spectral responsivity curves of the

sensors. Using ∆λ = 10nm, the whole visible range
of light can be covered. In the following we discard
the scalar constant ∆λ in the equations for simplic-
ity. The relation of the various variables is shown in
Figure 1.

We now arrange (2) into a matrix equation, as
we re-write matrix R as a vector

r = (R1,1 . . . R1,L . . . RK,1 . . . RK,L) (3)

and define a (K ·N×L·K) - matrix C consisting of
either zeros or measurements Eλρλ at i = 1, . . . , N

points Eλρ
(i)

λ to get

s = Cr . (4)

More specifically, with K = 3 for red, green and
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(5)

and the matrix C is shown below in (6).
Assuming that we have standard illumination,

i.e., Eλ is known, and knowledge on the reflectivity
and surface of the object, i.e., ρλ are known, we
can measure s and compute the unknown vector r .
Correspondence of known colors and their position
in the image accounts for the positions x in (2) and
for the N measurement points in (5). In order to get
a solution of the set of linear equations, the number
of measurements N must be greater than L.

The solution of (4) for the unknowns in r re-
quires regularization [1]. The following criteria 1-4
are used in [1]:

1. sensor positivity:
Rk,λ ≥ 0 where k ∈ {1, . . . , K} and λ ∈
{1, . . . , L}

2. sensor smoothness:
|Rk,λ − Rk,λ+1| < T for some threshold T

and λ ∈ {1, . . . , L − 1}

3. unimodality:
∀k∃κ : Rk,λ < Rk,λ+1 for λ ≤ κ and Rk,λ >

Rk,λ+1 for λ > κ

4. bounded prediction error:
|si −

∑L

j=1
Ci,j · rj | ≤ ε for i ∈ {1, . . . , N}

5. rank constraint:
rank(C ) ∈ {6, 7, 8} .

To obtain a subset of constraints 1–4, several op-
timization techniques have been proposed, such as
linear programming or quadratic programming [1].

The rank constraint has been tested empirically for
three color channels (K = 3) in [6, 7].

Of course, (1) assumes a linear relation of im-
age intensity and sensor response which needs to
be computed from real data by reverting the gamma
correction of the camera.

3. Simultaneous Optimization

In the following we derive an optimization of the
criteria 1–5 where some of the criteria 1–4 have
to be replaced by slightly weaker constraints. In-
stead of iterative optimization techniques, slightly
weaker constraints lead to a linear problem that will
be solved using singular value decomposition (SVD).
Inequalities are replaced by a single objective func-
tion which has to be minimized finally. For each
of the criteria we introduce a term in the objective
function.

Clearly, the criterion 4 is described by

||Cr − s ||2 → min . (7)

Constraint 2 for sensor smoothness requires that two
adjacent coefficients Rk,λ, Rk,λ+1 differ only up to
a threshold. This constraint is slightly weakened as
we use

K
∑

k=1

L−1
∑

λ=1

(Rk,λ − Rk,λ+1)
2
→ min . (8)

Since the squared difference is used instead of the
norm |Rk,λ − Rk,λ+1| as in constraint 2, large dif-
ferences are more penalized and imply a bias. We
define a (N × K) auxiliary matrix

D̃ =





















1 0 0 0 . . . . . . 0
−1 2 −1 0 . . . . . . 0
0 −1 2 −1 0 . . . 0
. . .

0 . . . 0 −1 2 −1 0
0 . . . . . . 0 −1 2 −1
0 . . . . . . . . . 0 0 1





















.
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(6)

and another (K · L × K · L) matrix

D =











D̃ 0 · · · 0

0 D̃ · · · 0

...
...

...
...

0 0 0 D̃











.

Then, constraint 2 can be expressed as

K
∑

k=1

L−1
∑

λ=1

(Rk,λ − Rk,λ+1)
2
→ min (9)

which, using (3) is equivalent to

r
T
Dr → min . (10)

The derivatives are

∂

∂r
r

T
Dr = 2 · rT

D , (11)

as D is symmetric. Combining (10) and (7) we get

f := ||Cr − s ||2 + µ||rT
Dr || → min (12)

for a fixed µ > 0. Computing the derivatives of (12)
we get

∂f

∂r
= 2rT

C
T
C − 2sT

C + 2µ · rT
D (13)

which is a row vector of dimension K · L. We set

∂f

∂r
= 0

and solve that for r . Thus we get

r
T
(

C
T
C + µ ·D

)

= s
T
C . (14)

As
(

C
T
C + µ · D

)

is symmetric and positive def-
inite, we get

r =
(

C
T
C + µ ·D

)

−1

C
T
s . (15)

This regularization is similar, but not identical with
the Tikhonov regularization used in [9].

We now turn to the rank constraint 5. To enforce
this, we factorize

C = UΣV
T

using singular value decomposition, i.e. Σ is the
diagonal matrix containing the singular values σi

of C , Σ = diag (σi) with σi ≥ σi+1. It is well
known from linear algebra that setting singular val-
ues to 0 in Σ yielding Σ

′ we can enforce the rank
of UΣ

′

V
T.

We introduce a matrix

P = [Pij ]i,j=1,...,N

where Pij = 1 for the first eight elements on the
diagonal and 0 everywhere else; this matrix is used
to generate Σ

′ as

Σ
′ = PΣ .

We check P9,9 = σ9 > θ for some small thresh-
old θ; if this is not true, our measurement matrix C

cannot be correct or it contains too much measure-
ment noise. Integrating this into (15) gives the new
combined equation

r =
(

VΣ
′

ΣV
T + µ ·D

)

−1

VΣ
′

U
T
s . (16)

We now need to check whether the positivity of
the results is valid. If not, we discard the result.
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Figure 2: Solution with µ = 0, i.e. by pseudo inverse

4. Experiments

In [3], data are shown for K = 3 and L = 101.2

We used these samples in our experiments. As can
be seen from Figure 2, regularization is required.

[2] used various basis functions such as a Fourier
basis to approximate the responsivity curves by a
linear combination of these functions. Thereby uni-
modality of the responsivity curves can be achieved.
A solution of (17) without further constraints will
yield a solution, that may have local maxima, but
other than that is feasible.

It turned out in the experiments that enforcing
the rank to 8 in (16) leads to a matrix with a large
condition number. The rank was thus enforced as in

r =
(

VΣ
2
V

T + µ ·D
)

−1

VΣ
′

U
T
s (17)

which lead to mathematically more stable results.
Dark current has been substracted from the sample
values and outlyers have been ignored.

Forcing the rank of C to 25 by (17) results in
curves that are similar to those of the full rank C ,
which numerically is 303 (Figure 3). Thereby, many
operations can be saved in the computation. On the
other hand, strong rank enforcement will not always
yield better results, as it can be seen in Figure 4.
In our experiments, reduction of the numerical rank

2The data are available on the internet in
http://www.cs.berkeley.edu/˜kobus on page
research/data/camera_calibration/index.html.
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Figure 3: Solutions for µ = 0.001 rank enforced to 25
by (17) (top), and without rank constraint (bottom)

by 20 to approximatly 280 gave much better results
than a reduction to rank 8 which results in too much
smoothing of the curves.

5. Conclusion

The high degree of similarity to the results of [2]
(Figure 4) justifies this linear approach. From the
figures it is clear that the positivity constraint can
be fulfilled automatically by the smoothness reg-
ularization, if µ < 0.01 with additional clipping.
Unimodality is not obtained without additional con-
straints or tools. In practice, it can be enforced by
clipping the curves to zero when they reach a local
minimum. This is also possible, if µ > 0.01 is cho-
sen and negative values are computed for the three
curves.

As we have derived a complete closed-form so-
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Figure 4: Solutions for µ = 0.0001 rank reduced by 23
to 280 (top) and rank enforced to 23 with µ = 0.00001

(bottom). The dotted lines sho results of [2].

lution of the problem, further parameters can be in-
tegrated easily into the equations, such as e.g. spa-
tially varying reflectivity functions.
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