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Abstract

We present image segmentation and highlight detection al-
gorithms based on the dichromatic reflection model. For
image segmentation, we use the model prediction that ob-
jects of a certain colour produce lines (the matte lines) ra-
diating away from the origin of the RGB colour space.
These lines therefore show up as peaks in a 2-dimensional
histogram of the angular coordinates of a spherical polar
coordinate representation of the RGB space. An algorithm
for automatically locating these peaks is suggested. When
the matte line locations are known, one can define cylin-
drical polar coordinate systems having their z-axes cen-
tred on the matte lines. We suggest a Hough-based algo-
rithm for the detection of highlight lines in 2D-histograms
of the ρ and z coordinates of the cylindrical polar coor-
dinate system. Examples of the results of applying these
algorithms are given.

Introduction

Physics-based methods, such as those based on the dichro-
matic reflection model for dielectric materials [1], have
been applied to the segmentation and analysis of colour
images based on their RGB histograms, as well as to the
estimation of scene properties such as surface roughness
and illuminant colour [2]. In general, the use of physics-
based techniques has been limited to images captured un-
der carefully controlled conditions which contain only ob-
jects which have physical characteristics described by the
model. It is thus known in advance that the colour his-
togram will have a form which is convenient to process.
Klinker et al. [1], for example, describe a rather complex
pixel clustering algorithm based on the dichromatic reflec-
tion model, which is demonstrated to work well on an im-
age of a group of plastic objects. We investigate in this
paper the applicability of the dichromatic reflection model
to the analysis of arbitrary images about which no prior in-
formation is known. Such images are found in abundance
in digital photograph collections and on the Internet, so
it is important to determine how much can be done by
analysing them based on the assumptions of a relatively
simple physical model.

The dichromatic reflection model predicts that when

a ray of light interacts with a material, it splits into two.
One part is directly reflected by the surface and the other
part enters the material. Some of the light that enters the
material will eventually, through scattering and refraction
by the material, exit through the surface by which it en-
tered. These two processes are referred to as surface re-
flection and body reflection. The surface-reflected light
causes highlights (specular reflection) on the material. In
the RGB space, the model predicts that the colour of an
object satisfying the model will make up two linear clus-
ters. The matte line, corresponding to body reflection,
passes through the origin (as long as there is no ambient
illumination in the scene [2]). The highlight line corre-
sponds to surface reflection, and extends away from the
matte line somewhere along its length. The two clus-
ters together are therefore in the shape of a skewed-T or
skewed-L. In the more general case of diffuse surface re-
flection, it could also be in the shape of a skewed-P. Di-
electric materials include porcelain (ceramic), glass, plas-
tics, and the oxides of various metals. More specifically,
Tominaga [3] has shown experimentally that plastics, paints,
ceramics, vinyls, tiles, fruits, leaves and woods are well
described by the dichromatic reflection model; whereas
metal, cloth and paper are not. This list covers a large pro-
portion of materials which are often present in images, and
so supports our application of this model to such general
images. However, the developed algorithm is not guaran-
teed to work in all cases — sometimes the assumptions are
violated to too great an extent. It will have to be combined
with other techniques and possibly other physical models
to produce a completely general algorithm.

Recently there has been some work done on the au-
tomated detection of highlights in images through the use
of 2D histograms of the brightness and saturation coordi-
nates [4, 5] in a 3D-polar coordinate colour representation.
In these histograms, the colours of pixels in highlight re-
gions tend to form straight lines in the high brightness part
of the histogram. The highlight lines in the RGB space
are effectively all projected onto a plane in the histogram.
What is not mentioned is that this method is particularly
good for detecting colour clipped pixels. These are the
regions of a scene whose brightness exceeds the dynamic
range of the camera. The pixels corresponding to these
regions tend to lie along the faces of the RGB cube [1].
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This implies that in the brightness-saturation histogram,
they will lie along the line corresponding to the maximum
saturation for a given brightness, the position of which can
easily be determined. Torres et al. [5] take the rather bru-
tal approach of performing a histogram equalisation of the
brightness channel before calculating the 2D histogram.
While the results demonstrated look good, this step should
guarantee the detection of some highlights in every image,
even if none are present.

Our aim is to develop a segmentation and highlight
detection algorithm based on characteristics of the dichro-
matic reflection model and to demonstrate that it works
well on a number of real images. Ong and Matsuyama [6]
have suggested a clustering algorithm in the RGB space,
but their experimental results are limited to images con-
taining only one or two materials. The Markov Random
Field approach based on the dichromatic reflection model
proposed in [7] is only tested on a single artificial image.
In our approach, we first make use of the property that
all the matte lines intersect the origin of the RGB space.
A representation of RGB coordinates in terms of spher-
ical polar coordinates therefore allows these lines to be
straightforwardly detected in a 2D-histogram. Once we
have the position of the matte lines, colour and highlight
analysis for each matte line are done by representing the
RGB coordinates in terms of cylindrical polar coordinates
centred on each matte line. We examine the use of 2D his-
togram analysis in this coordinate system for the detection
of highlights in images.

Segmentation in Spherical Polar Coordinates

As our goal is the segmentation of arbitrary images, we
attempt to use the dichromatic reflection model to as great
an extent as possible, while keeping the segmentation al-
gorithms simple. We begin by demonstrating the use of
a spherical polar coordinate system for highlighting the
linear matte clusters, and then describe an algorithm for
automatically segmenting the images based on their 2-
dimensional histograms in spherical coordinates.

Spherical polar coordinates

As a demonstration of the clustering of colours into linear
structures, we plot, in Figure 1b, the RGB histogram of
Figure 1a, for which no special effort has been made to
include only objects satisfying the dichromatic reflection
model. The points in this histogram have colours given
by their corresponding RGB coordinates. One can see in
the histogram that there are linear clusters corresponding
to the blue slide and to the skin and a (less-linear) clus-
ter corresponding to the grass. Two artefacts due to the
acquisition procedure are also visible:

• The blue cluster changes direction and lies along a
face of the RGB cube in the high brightness region

(a) (b)

(c) (d) (e)

Figure 1: (a) Initial image. (b) RGB histogram of (a) (created
using the Colorspace software [10]). The (c) M , (d) θ and (e) φ

spherical coordinates of image (a)

of the RGB space. This colour clipping [8] is due to
the limited dynamic range of the camera.

• The clusters curve slightly. This is due to the gamma-
correction of the camera [8]. It could potentially be
corrected by one of the gamma-correction compen-
sation algorithms available [9].

As we assume that the linear clusters radiate out from
the origin, a representation of the RGB values in spherical
coordinates should result in pixels belonging to the same
linear cluster having similar angular coordinates. Bajcsy
et al. [11] have used a similar approach in their S space.
The disadvantage of the S space in the present context is
that it requires the scene illumination colour to be known.
While algorithms to estimate this exist [12], they introduce
extra uncertainty into the process. The conversion from
RGB to spherical coordinates is done as follows:

M =
√

R2 + G2 + B2 (1)

θ = tan−1

(

G

R

)

, φ = cos−1

(

B

M

)

(2)

The images corresponding to the spherical coordinate
representation of Figure 1a are shown in Figure 1c–e. No-
tice that for the θ and φ images, the coordinates corre-
sponding to a specific object are rather uniform. This can
be better seen by looking at a two-dimensional histogram
of the θ and φ coordinates, shown in Figure 2. On this
histogram, the clusters corresponding to various objects
in the initial image have been manually annotated.
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Figure 2: The 2-dimensional θ–φ histogram. The regions to
which the clusters correspond have been entered by hand.

Segmentation based on the 2D histogram

Based on the information visible in the 2D θ–φ histogram,
it is simple to produce a segmentation of the initial im-
age. One places straight lines in the RGB space passing
through the origin in the direction of each detected clus-
ter in the histogram (an algorithm for automatic cluster
detection is presented later). For each pixel in the initial
image, the line closest to it in the RGB space is found,
and it is assigned to the cluster described by that line. In
3D space, the shortest distance d between a line passing
through points x1 = (x1, y1, z1) and x2 = (x2, y2, z2),
and a point x0 = (x0, y0, z0) is given by

d =
|(x2 − x1) × (x1 − x0)|

|x2 − x1|
(3)

where × indicates the cross product between two vectors.
To segment a colour image described by the function

f (x) giving the vector (R, G, B) at position x in the im-
age, the following algorithm is used:

1. The cluster centres in the 2D θ–φ histogram are
found, either manually or automatically, giving N

pairs of coordinates Li = (θi, φi) , i = 1, 2, . . . , N .
2. The coordinates Li are converted to RGB coordi-

nates L
C
i = (Ri, Gi, Bi). The value of M in this

conversion is arbitrary, and is taken to be 1.
3. For every pixel x in the input colour image:

(a) Equation 3 is evaluated for each L
C
i , taking

x1 = (0, 0, 0), x2 = L
C
i and x0 = f (x),

producing N distances di.
(b) The pixel is assigned to the cluster j corre-

sponding to the smallest distance, i.e. dj =
mini (di).

Automatic segmentation of the 2D histogram

We first consider histogram creation. One of the histogram
parameters which can have an effect on the automatic ex-
traction of maxima is the quantisation. It was experimen-
tally determined that a histogram quantisation step of 2◦

worked well with the proposed algorithm. This larger
quantisation step has the effect of reducing the number of
local maxima in the histogram.

Colour clipping in the histogram can cause some of the
blobs in the histogram to spread out, and hence can perturb
the finding of blob centres. We therefore implemented a
heuristic solution to this problem proposed by Klinker et
al. [8]. Potentially colour clipped pixels can be identi-
fied by placing a high threshold on the values of the three
colour channels. Pixels which have a value in one of the
R, G or B channels greater than a threshold (here 240)
are excluded from the histogram. The histogram of Fig-
ure 1a calculated using these two modifications is shown
in Figure 3a. It can be processed as a greylevel image.

An important step is automatically finding the blob
centres. They are initially found by using the h-maxima
operator [13]. The parameter h indicates how high a peak
should be with respect to the surrounding region to qual-
ify as a valid maximum. We found experimentally that a
value of 5×10−4 multiplied by the number of pixels in the
image under consideration works well. The results are not
sensitive to small changes in the value of this parameter as
the peaks are generally well-defined. The positions of the
five maxima found by applying the h-maxima operator to
the histogram of Figure 3a are shown in Figure 3b. Note
that the two points at the lower right are a single maxi-
mum, as 8-connectivity was used.

The next step is to refine the positions of the max-
ima by calculating a greylevel-weighted centre of mass of
each blob. Before this can be done, we need to find the
“zones of influence” of each maximum, which we do by
using the watershed operator [13]. This is applied to the
inverted histogram (the flooding starts from the minima)
on which the maxima found by the h-maxima operator
have been imposed as minima. Figure 3c shows the wa-
tershed lines and regions found by the watershed operator.
The greylevel-weighted centre of mass is now calculated
within each region on the histogram in the standard way.

The centres of mass of the five regions located by the
algorithm are given by the following (θ, φ) coordinates:
(44.9, 40.3), (44.9, 53.3), (39.1, 61.1), (51.7, 68.4) and
(59.7, 34.4). The segmentation obtained when using these
cluster centres in the process described previously is shown
in Figure 5b, in which each cluster is indicated in a dif-
ferent randomly-chosen colour. In general, the segmenta-
tion corresponds well to the objects in the image. Almost
all regions which are misclassified correspond to high-
lights, such as those on the slide and on the boy’s fore-
head. This is understandable, as the highlights give rise
to side branches of the matte clusters, which have not yet
been taken into account. Other algorithms, such as graph-
theoretical clustering [14], could also be applied to this
cluster-finding task. A further example of such a segmen-
tation applied to Figure 7a is shown in Figure 7b. Here
again, the five regions detected correspond well to actual
objects in the scene. More examples are given in [15].
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(a) (b) (c)

Figure 3: (a) The θ-φ histogram of Figure 1a with bins of size 2
◦. The values on the axes should be multiplied by 2 to get values in

degrees. (b) The h-maxima of histogram (a). (c) The watershed of the inversion of (a) on which (b) have been imposed as minima.

Detecting highlights

We now use the knowledge of the position of a matte line
extracted during the segmentation step to attempt to lo-
cate highlight lines radiating out from it. The crucial step
is the conversion to a cylindrical polar coordinate system
with its z-axis centred on the matte line to be analysed.
Image analysis methods developed for use in cylindrical
polar coordinate colour spaces (HSV, HLS, etc.) are also
applicable in this representation.

Cylindrical polar coordinates

To align the z-axis of the cylindrical polar coordinate sys-
tem with the matte line having a direction given by the
spherical coordinates θ and φ, we rotate the RGB axes so
that the B axis is aligned with the matte line before con-
verting to cylindrical coordinates. This is done by multi-
plying each RGB vector by the following rotation matrix:





cos (φ) cos (−θ) − cos (φ) sin (−θ) sin (φ)
sin (−θ) cos (−θ) 0

− sin (φ) cos (−θ) sin (φ) sin (−θ) cos (φ)





(4)
The conversion to ρ, θc and z cylindrical coordinates is
then done as follows:

ρ =
√

R2
r + G2

r, θc = tan−1

(

Gr

Rr

)

, z = Br

(5)
where Rr, Gr and Br are the rotated R, G and B coor-
dinates. Note that θ is an angular coordinate in the spher-
ical coordinate system, and θc in the cylindrical coordi-
nate system. In the example image, the spherical coordi-
nates of the blob corresponding to the slide are θ = 59.7
and φ = 34.4. The images showing the ρ, θc and z co-
ordinates when the z-axis is aligned with the matte line
having these coordinates are shown in Figure 41. In this
representation, the pixels having a colour closest to the se-
lected matte line have the smallest ρ values, as can be seen

1If one substitutes spherical coordinates θ = 45
◦ and φ = 54.7◦

into the rotation matrix, the B-axis lines up with the achromatic axis
(i.e. the axis through all the grey colours), giving the standard cylindrical
polar coordinate colour representation.

(a) (b) (c)

Figure 4: The (a) ρ, (b) θc and (c) z coordinates of the cylindri-
cal polar coordinate representation with the z-axis aligned with
the matte line corresponding to the slide.

for the slide region. Highlight lines extending away from
the matte line will be characterised by increasing ρ values
and relatively constant θc values. As the highlights are
bright, they should also have high z values. It can be seen
that the reflections on the slide have these characteristics.
Two possible approaches are conceivable: an analysis of
the images to find, for example, areas adjacent to the slide
which have the required characteristics to be highlights, as
done in [11], or the analysis of histograms to find potential
highlight pixels. We pursue the latter approach.

Highlight line detection

To find the highlight line, we begin by calculating a one-
dimensional θc histogram weighted by the z-values (the
bins are incremented by the z-value corresponding to each
θc-value instead of by 1). The z-weighting is used as it is
expected that the highlights are bright and therefore have
high z values. The highest peak in the histogram, at po-
sition θmax, is the expected position of the highlight line.
The z-weighted θc histogram calculated using the cylin-
drical coordinate system centered on the slide is shown in
figure 5a. The highest peak in this histogram is at 327◦.
At present, we only take the position of the highest peak
into account in further steps.

Figure 6a shows the 2D histogram having z-values
on the horizontal axis and ρ-values on the vertical axis
for the cylindrical coordinate system centred on the slide.
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(a)

(b) (c)

Figure 5: (a) The z-weighted θc histogram. (b) Figure 1a seg-
mented by the suggested algorithm. (c) The detected highlights
marked on (b).

(a)

(b)

Figure 6: (a) The z-ρ 2D histogram for pixels in the angular
range θc = 327 ± 20

◦ for the images in Figure 4. (b) The
Hough-type transform of histogram (a).

The highlight line is clearly visible on the right, starting
from the horizontal axis. The cluster further up is an-
other matte line. This histogram includes only those pixels
which have θc values in the range of 20◦ on either side of
θmax, i.e. 327◦ ± 20◦. This limit prevents the highlight
line from being masked by extraneous information due to
other colours in the image.

Based on the underlying reflection model, we expect
the highlight lines to: lie in the high brightness area of
the histogram, start close to the matte line (which in this
histogram is the horizontal axis), and slope toward the
right in the histogram. These lines are therefore most use-
fully characterised by the following two parameters: zl,
the starting position of the line on the horizontal axis and
θl, the angle of the line with respect to the horizontal axis
(measured between the positive direction of the horizon-
tal axis and the line). We use a Hough transform-based
algorithm to find the coordinates of the highlight line ac-
curately. We incorporate the first two assumptions about
the position of the highlight line by limiting the search
to the region of the histogram satisfying ρ ≤ 0.25 and
z ≥ 0.5. For all pixels lying in this region of the his-
togram, lines having all possible values of zl and θl are fit-
ted, and their coordinates in a Hough accumulator are in-
cremented. This accumulator calculated for the histogram
in Figure 6a is shown in Figure 6b, where the zl coordi-
nates are on the horizontal axis, and the θl coordinates on
the vertical axis. The maximum value in this histogram is
at zl = 77 and θl = 69◦, which corresponds well to the
highlight line visible on the corresponding 2D-histogram.

For visualisation, we mark all pixels having colour co-
ordinates lying within the cylinder with radius 0.15 cen-
tred on the detected highlight line and having ρ-coordinates
between 0.05 and 0.5 as white on the segmented image,
shown in Figure 5c. It is clear that the highlights on the
slide are extremely well detected, with those on the steps
behind the slide detected too.

A further example of highlight detection for the skin
region of Figure 7a is shown. The 2D ρ–z histogram cen-
tered on the matte line corresponding to the skin is shown
in Figure 7c, in which it is visible that as the highlight re-
gion is so small, the highlight branch is extremely faint.
The Hough-based algorithm fails for this particular case
(it has a maximum at θl = 86◦ and zl = 61) as it is in-
fluenced by the background pixels. A possible solution
to this problem, which remains to be tested, is to elim-
inate all pixels having colour coordinates lying within a
specified distance from any of the matte lines (except for
the one forming the centre of the coordinate system) from
consideration. The highlights found using manually de-
termined coordinates for the highlight line (θl = 60◦ and
zl = 75) are shown in Figure 7d. The labelling of the
highlight regions has not been limited to the skin areas in
this image. Looking at these regions, one sees that the
highlights on the faces and hand have been well detected.
However many other white regions, such as the clothes,
have also been marked as highlights. Further examples
are presented in [15].

Conclusion

The use of the dichromatic reflection model in segment-
ing and detecting highlights in arbitrary images has been

CGIV 2004: The Second European Conference on Colour Graphics, Imaging and Vision

171



(a) (b)

(c) (d)

Figure 7: (a) Initial image (NASA). (b) Segmented image. (c) 2D
ρ − z histogram for the direction θc = 146

◦. (d) Highlight
regions for the manually determined coordinates.

discussed. For segmentation, we make use of the model
prediction that all matte lines radiate out from the origin
in the RGB space. This suggests that a representation of
RGB coordinates in terms of spherical polar coordinates is
useful for segmentation. At present, we optimise the coor-
dinates of the matte lines found by finding the centres of
the clusters in the 2D θ–φ histogram as accurately as pos-
sible. An improvement in accuracy is likely if the matte
lines are fitted to the clusters in the RGB space once the
approximate centres have been found on the histogram. A
point to be kept in mind is that because all the matte lines
intersect at the origin, classification of dark-coloured pix-
els into regions is most likely arbitrary. The M coordinate,
however, can be used as an indicator of the certainty of the
classification. Furthermore, if a detected cluster does not
contain any pixels near the origin and does not lie along a
line radiating away from the origin, this could be evidence
of a non-dielectric object in the image.

Once the matte lines have been found, we suggest a
further analysis in a cylindrical polar coordinate system
centred on the matte lines, which is demonstrated for high-
light detection. The method for the detection of highlight
lines is still in need of improvement and further automa-
tion. For example, the background clutter in the ρ–z his-
tograms could be reduced by excluding all pixels which
are close to matte lines not under consideration. Further
information that could be used is that all the highlight lines
are parallel and in the direction of the illumination colour
[8]. Methods for estimating the illumination colour [12]
could potentially be used to limit the search directions
for the highlight line, thereby eliminating the need to use
the z-weighted θc histogram. A comparison to clustering
methods, such as the one described in [6], as well as the

potential complementarity of these approaches remains to
be investigated.
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