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Abstract
Many color-based image retrieval systems define the sim-
ilarity (with regard to color) between two images as the
similarity between the probability distributions of the color
vectors in the images. These probability distributions are
almost always estimated by histograms. Histograms have
however the disadvantage that they are discontinuous and
their form depends on the selection of the histogram bins.
Results from probability theory and statistics show that
kernel-based estimators are superior to the histogram in
many respects. Previous studies in image retrieval have
however shown that a naive application of kernel-based es-
timators provide no improvement in retrieval performance.

In this paper we first motivate why a combination of
kernel-based estimators and Fourier transform theory pro-
vides good estimators of the similarity of hue-distributions.
We then show that Fourier coefficients provide efficient
descriptors of the probability distributions and that these
Fourier coefficients can be directly used to compute the
similarity between the hue distributions of images. Next
we describe two methods to select the most relevant Fourier
coefficients for image retrieval. We will argue that in im-
age retrieval we should not select those Fourier coefficients
that are most important for the description of the probabil-
ity distributions themselves but that we should select those
coefficients that are most important in the estimation of
the difference between similar distributions. In the exper-
imental part of the paper we describe the performance of
these kernel-based methods when they are applied to im-
age retrieval tasks involving the MPEG7 image database.
We will show that the retrieval performance of the kernel
based method is better than the performance of histogram
methods and we will show that the retrieval performance
is also relatively insensitive to the choice of the Kernel and
the width of the Kernel.

Introduction

Color is widely used for content-based image retrieval. In
these applications the color properties of an image are char-

acterized by the probability distribution of the colors in the
image. These probability distributions are very often esti-
mated by histograms [3, 4]. Well-known problems of his-
togram based methods are: the sensitivity of the histogram
to the placement of the bin edges, the discontinuity of the
histogram as a step function and its inefficient use of the
data in estimating the underlying distributions, compared
to other estimators [2, 6, 5, 10]. These problems can be
avoided by using other methods such as kernel density es-
timators.

To our best knowledge there are only a few papers [1,
7, 8] that use kernel density estimators in image retrieval.
One reason is that the straightforward way of applying
kernel density estimators gives very bad retrieval perfor-
mance [7, 8]. Gaussian expansions were proposed in [7, 8]
where an improvement of the kernel based method com-
pared to the traditional histogram-based method was ob-
tained. In this paper we use the Fourier Transform together
with kernel based methods. We apply them to hue-based
image retrieval and show that these estimates are superior
to histogram based methods.

Non-parametric density estimators

Fast color based image retrieval methods usually describe
the color properties of an image by the probability distri-
bution of the colors in the image. The first decisions in the
design of such a color based retrieval system are thus: (1)
how to estimate the probability distribution and (2) how to
represent the estimated distribution efficiently. Methods to
estimate probability distributions come in two variations:
parametric and non-parametric methods. Parametric meth-
ods choose a family of probability distributions first and
then they estimate these parameters from the data. Typical
examples are Gaussian mixture models. These methods
are not appropriate for retrieval since the color distribu-
tions of interest can, and will, be of very different types.
Non-parametric methods avoid these problems by describ-
ing the probabilities directly. The simplest non-parametric
method is the histogram. It divides the color space into
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different non-overlapping regions and then it describes a
given distribution by counting how many pixels in an im-
age are located in each region. Another slightly different
approach is to estimate in each point x in color space the
density f by

f(x) ≈ f̃(x) =
Number of pixels in N(x)

Number of samples · Volume of N(x)

where N(x) is a neighborhood of x. This gives a discrete,
discontinuous estimate and therefore it is preferable to use
kernel based methods. Such a kernel estimator f̂K at point
x of a distribution f(x) is defined by

f̂K(x, h) =
1

Nh

N∑
n=1

Kh(x, Xn) (1)

where N is the total number of samples (pixels), Xn are
the data points (the color values of the pixels in the im-
age), h denotes the window width of the estimator, also
called the smoothing parameter or the bandwidth. The ker-
nel Kh(x, Xn) counts the data point Xn with a weight de-
pending on its relation to the point x. Often Kh(x, Xn)
depends on the distance between x and Xn :

Kh(x, Xn) = Kh(‖x − Xn‖)

In almost all applications we define a kernel as a non-
negative real function K with

∫
K(x)dx = 1 and we mea-

sure the influence between points as a function of their dif-
ference:

f̂K(x, h) =
1

Nh

N∑
n=1

K(x − Xn)/h}

=
1
N

N∑
n=1

Kh(x − Xn) (2)

The scaled kernel is Kh(u) = h−1K(u/h).
From this form of the density estimate we make two

observations and we will show that both of them will lead
naturally to the Fourier Transform.

Symmetry-Based Compression

In the following discussion we consider only estimators of
hue distributions which provide in a certain sense the sim-
plest example. We also restrict us to the case of continuous
distributions. The discrete case can be treated in the same
way within the framework of the discrete Fourier trans-
form. Most of the characteristic properties can be substan-
tially generalized in the general framework of harmonic
analysis.

Hue is in almost all color systems described as an an-
gular variable. The values of x, Xn etc. are therefore all

located on the unit circle. For a given, fixed, image ω the
true (unknown) density fω is therefore a function defined
on the unit circle. We now select a basis bk for the Hilbert
space of square integrable functions on the unit circle. In
this system the density has an expansion

fω =
∑

k

〈fω, bk〉bk (3)

In the retrieval application we cannot keep all the coeffi-
cients 〈fω, bk〉 but we have to select a finite number (say
L), of them: 〈fω, b1〉, . . . 〈fω, bL〉. For each image, i.e.
each fω such an approximation leads to an error δ(ω, L)
and it is natural to choose the b1, . . . , bL such that this ap-
proximation error is minimized. We have now formulated
the problem as an minimum-least-squared error problem
and it can be shown that for shift-invariant problems the
optimal basis are the complex exponentials bk(x) = eikx.
Shift-invariance means in this case that for every distribu-
tion f(x) and every constant ξ there is an equally likely
shifted distribution f(x+ξ). Here the assumption of shift-
invariance of the hue-distributions leads to Fourier series
as an optimal solution.

Computational Advantage

Next we note that the sum
∑N

n=1 Kh(x − Xn) is the con-
volution of the kernel function Kh with the sum of Dirac
delta functions located at the positions of the data points
Xn : f̂K(x, h) = (Kh ? F ) (x) where F puts weight 1/N
at each data point. This convolution form of the estimate
suggests that the Fourier Transform can lead to substantial
simplifications. We therefore compute the Fourier trans-
form F(f)K(y, h) of the distribution in Eq. 1 as follows:

F(f)K(y, h) =
∫

f̂K(x, h) · e−ixydx

=
1

Nh

∫ N∑
n=1

K{(x − Xn)/h} · e−iyxdx

=
1
N

N∑
n=1

∫
K(t) · e−iy(ht+Xn)dt

=
1
N

{
N∑

n=1

e−iyXn

}∫
K(t) · e−iyhtdt

=
1
N

{
N∑

n=1

e−iyXn

}
F(K)(yh) (4)

where F(K) is the Fourier transform of the kernel K. We
see that the factor

∑N
n=1 e−iyxn of the Fourier transform

F(f)K(y, h) in Eq. 4 is independent of the kernel and the
smoothing parameter h. It can thus be computed from the
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data once and then new estimates with different kernels
and smoothing parameters can be computed without ac-
cessing the data again.

Similarity and Compression

Motivated by the previous observations we choose to esti-
mate the probability density by its Fourier transform Eq. (4)
and we show how to compute the similarity between im-
ages by these Fourier transforms.

We define the distance between two images I1, I2 as
the distance between the two corresponding hue distribu-
tions f1(x) and f2(x) and compute the similarity between
them using the Parsevals relation:

similarity(I1, I2) = similarity(f1(x), f2(x))
= 〈f1(x), f2(x)〉

=
1
2π

〈F(f1)K(y, h),F(f2)K(y, h)〉 (5)

For hue-distributions the Fourier transform is actually
a Fourier series since the functions are all defined on the
circle. The scalar product 〈F(f1)K(y, h),F(f2)K(y, h)〉 is
thus equal to the scalar product of the Fourier coefficients
of the hue probability distributions and we can regard the
Fourier coefficients as descriptors of the hue properties of
an image. Since it is desirable to minimize the number of
descriptors we have to choose a method to select the most
important Fourier coefficients. Arguing as above we can
select those coefficients that contribute most to the average
reduction of the reconstruction error. We call this the PCA
selection method and denote it by the subscript D (Direct
estimation based on the reduction of the L2 reconstruction
error). This may not be an optimal solution for image re-
trieval since in retrieval we are not primarily interested in
the description of the distributions but we are mainly inter-
ested in estimating the similarity between similar images.
For an image we thus want to have a good estimation of the
similarity to other images that have very similar properties.
The approximation for very different images is of no im-
portance since they are of no interest in retrieval. In our
experiments we implemented this, difference-based, fea-
ture selection method as follows:

1. We select from the image database 100 random im-
ages and use each of them as query image

2. For each of these 100 images we select the 50 most
similar (using all Fourier coefficients)

3. For each of the query images and each of its neigh-
boring images we compute a difference image. This
results in 5000 images

4. From this database of 5000 images we compute those
Fourier coefficients with the maximal mean value
(best approximation) of the differences.

We call this the local estimation method and denote it by
the subscript L (i.e. the Local estimation method).

In both cases we describe the two Fourier transforms
(or two hue distributions of the two images) by selecting
the most important Fourier coefficients η(1,m), η(2,m) of
F1 and F2 with m = 0, . . . M and estimate the similarity
between the two images by the inner product of two low
dimensional vectors:

similarity(I1, I2) ≈
1
2π

∑
m

η(1,m) · η(2,m) (6)

Experiments

In our experiments we evaluated the retrieval performance
of the above new descriptors in our image retrieval engine
using the MPEG7 database of 5466 images (see [11] for a
description).

Evaluation and comparison of different retrieval meth-
ods is a difficult problem. In our experiments we used
the ANMRR (average normalized modified retrieval rank)
method. The definition of ANMRR is quite complex and
here we only need to know that a lower ANMRR value
means better retrieval performance (for a complete descrip-
tion of ANMRR see [11]).

We first compare the retrieval performance of the his-
togram and the kernel based method (see Figure 1). In this
experiment the triangular kernel and the smoothing param-
eter h = 0.0056 was used. The experiment shows that the
kernel based retrieval is always better than the histogram
based method. For example, using 10 Fourier coefficients
gives a retrieval performance comparable to the retrieval
based on 23 coefficients from a histogram. The improve-
ment is largest for a low number of coefficients, which is
the most relevant case for large image databases.

The application of kernel based methods requires the
selection of the kernel to be used. It is therefore of interest
to see how retrieval performance depends on the choice of
the kernel. The results of our experiments with different
kernels is summarized in Figure 2. In general we found
that using different kernels gives comparable retrieval per-
formance when the kernel is not over-smoothed. When
h < 0.01 all kernels had identical retrieval properties. We
tested seven different kernels (Epanechnikov, Biweight, Tri-
weight, Normal, Triangular, Laplace, Logistic, detailed def-
inition of kernels can be found in [10]). In the experiment
shown in Figure 2 an over-smoothed kernel with h = 0.05
is used.
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Figure 1: Retrieval performance of histogram and Fourier trans-
form based method using triangular kernel, the smoothing pa-
rameter h = 0.0056

Once the kernel has been selected the next choice is
the selection of the smoothing parameter h. The value of
the bin-size is a very critical parameter in histogram meth-
ods and therefore it is important to test how critical the
corresponding parameter h is in the kernel based methods.
We used the MPEG database and computed the retrieval
performance for a wide selection of smoothing parameters
and number of Fourier coefficients. The result is illustrated
in Figure 3. It shows that the retrieval performance is al-
most independent of the value smoothing parameter if it
has been chosen in a reasonable region. From our exper-
iments we conclude that using a larger smoothing param-
eter h gives a better retrieval performance. However the
performance does not change for h below 0.005. We tested
30 different smoothing parameters ranging from 0.0001 to
0.2.

We also compared the performance of the direct and
the local coefficient selection method. We used differ-
ent kernels and different smoothing values. The results,
collected in Table 1 shows that the local feature selection
method is slightly more efficient than the direct method.
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Figure 2: Retrieval performance of Fourier transform based
method using different kernels with smoothing parameter h =

0.05

Conclusions

From the results of our experiments we found that applica-
tions of kernel methods in which the estimated density dis-
tribution is sampled and the sample values are used as de-
scriptors are comparable to histogram methods of the same
complexity. The additional computational cost is thus not
justified and this may be one of the reasons why kernel
methods are not widely used in image database retrieval
applications.

In this paper we replaced the sample based description
by a description in which the estimated probability distri-
bution is expanded in a basis and the expansion coefficients
are used as descriptors. The application of this strategy re-
quires three major decisions:

1. Selection of the kernel function

2. Selection of the smoothing parameter

3. Selection of the basis used to describe the estimated
distribution

Our experiments show that the selection of the kernel func-
tion and the smoothing parameter are not very critical. In
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Figure 3: Retrieval performance of Fourier transform-based
method using triangular kernel with different smoothing param-
eters.

this paper we used only hue distributions and in this case
we argued that the Fourier basis is optimal under very gen-
eral conditions. When other types of distributions are used,
other basis systems are certainly preferable.
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