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Abstract 

Chromatic induction depends, among others, on the 
frequential content of the observed region.5 As it is shown 
in Ref. [7], the two chromatic induction effects, i.e. 
chromatic contrast and assimilation, can be 
computationally simulated by blurring and sharpening 
operators, respectively. In this paper, we present a first 
unified approach to both effects using a wavelet 
decomposition approach. We propose a weighting 
function that modulates the multiresolution wavelet 
coefficients of any image point to perform either 
assimilation or contrast at every frequential level of the 
image. The recovered image present similar properties to a 
perceived colour image. 

Introduction 

Land et al.2 showed how the colour perceived by the 
human visual system of a surface does not match with the 
physical light emitted by this surface. Then, the perceptual 
representation of the colour of a point depends on 
something else in the scene than just the physical 
properties of that point. There are simple and well known 
examples that easily show how colour appearance or 
perceived colour can change depending on the image 
content.4 

In computer vision, researchers are in pursuit of 
automatic image understanding, the final goal is to put on 
computers the ability to act in front of any real scene in the 
same way as human visual system do. The automatisation 
of this process begins with the representation of a colour 
scene as a digital image. Colour on digital images is 
usually represented by the RGB responses of any 
commercial camera that is often used under uncontrolled 
conditions. Therefore, we would need to represent colour 
in such a way that simulates how colour is perceived by 
the human visual system. If we achieved this goal, further 
processes would be based on perceived colour.3,7 

In colour literature all the changes in perceived colour 
caused by a nearby inducing stimulus are referred as 
colour induction mechanisms (see Figures 2 and 3). Smith 
et al.5 measure the relationship between spatial frequency 
and colour induction effects, concretely on assimilation 
and contrast induction mechanisms. While the former 
behaves as a blurring effect, the latter is similar to a 
sharpening. 

Considering these results, in this paper we propose a 
computational procedure as a first step to build perceived 
images where the effects of chromatic contrast and 

assimilation are produced regarding the local spatial 
frequency information of a digital image. Our unified 
approach is based on a wavelet decomposition of the 
colour image. 

Wavelet Transform 

Given an image, I, its wavelet decomposition is denoted 
by: 
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where *
,njψ  are the conjugate wavelet basis functions with 

parameters, j and n, related to the scale and pixel position 
respectively, and )(, Injω  is the decomposition coefficient 
of image I of pixel n and for the j wavelet plane. Given 
this decomposition, the original image can be completely 
recovered by integrating the coefficients with the basis 
functions. Although this is the general approach, in this 
work we will work on a particular case, it is the à trous 
algorithm.1 

In the à trous algorithm, a sequence of images ci is 
obtained by iteratively convolving these images by a low 
pass filter h. The difference between two consecutive 
images is the jω  wavelet plane associated to a certain 
resolution j. This compact jω  notation for the wavelet 
coefficients refers to the set of all the coefficients n, at a 
certain resolution j. 

Using a one-dimensional notation for the sake of 
simplicity, we can see an initial discrete signal c0(k) (in the 
present case it would be an image, I≡ c0(k)) as a projection 
of continuous function f(t) on a discrete V0 space spanned 
by )(tφ  basis functions, called scaling functions. The 
projection on a subspace 0VVi ⊂ , 
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is then an approximation of  c0 at scale or resolution j. The 
approximation of coefficients cj+1 at scale j+1 can be 
calculated by means of the discrete convolution of 
coefficients cj at scale j with a filter h, 

)2()()(1
j
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and the wavelet coefficients can be calculated as the 
difference between two consecutive scales, 

)()()( 1 kckck jjj −= −ω .    (4) 
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This expression can be developed to show its 
recursive nature as a function of the original image I and 
the filters hi: 
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In our case we have used a B3 spline function for the 
scaling function )(tφ , which leads to a h(n) function that 
can be approximated by a Gaussian kernel. The hi filters 
are resampled versions of the original h(n) kernel. It is 
performed in order to accommodate, into the above 
convolution of this kernel with the original I image, the 
convolution of this kernel on the resampled )2( j

j nkc +  
data in equation (3). 

The reconstruction of the original signal is simply the 
sum of all the wavelet coefficients plus the residual 
approximation cN(k), 
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From a computer vision point of view, the à trous 
algorithm can be understood as a multi-scale Laplacian 
filtering, where high frequency edges are separated on low 
index coefficients and low frequency edges appear on high 
index coefficients. 

Perceived Image 

Considering the results of previous section, now we can 
use the à trous algorithm as an efficient procedure to build 
a transformed image. In this framework we will call a 
perceived colour image, as a transformed image whose 
pixels have changed depending on its original colour and 
on spatial frequency properties; these chromaticity 
changes has to go in the same directions as induction 
mechanisms of the human visual system. This paper 
represents just one more step towards the final goal of 
building colour images that do not represent the physical 
properties of the light that reaches an acquisition device 
but the internal representation that human visual system 
builds for further processing. These perceptual 
representations must help in solving the ill-posed 
problems of computer vision. 

Some induction mechanisms have easily been 
explained in terms of the image spatial frequency.5 Colour 
assimilation is produced when colour appears in high 
frequency image regions, which makes we perceive the 
left side of Figure 2 as greenish. Colour contrast is 
produced when colour appears in low frequency image 
regions and it makes we perceive more contrast on blue 
and yellow regions of the right side of Figure 2. 

Assimilation effects are usually simulated as a 
blurring of the image using Gaussian kernels, which 
means that high frequency features from the original 
image are diminished or eliminated. In contrast, chromatic 
contrast is implemented with Laplacians filters in order to 
increase differences between neighbour pixels. 

To perform chromatic induction effects, i.e. 
assimilation and contrast, in the wavelet space we propose 
to introduce a weighting function that performs 
assimilation or contrast effects depending on the spatial 
frequency of the images, thus 
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where )( jα  represents the colour induction function. It 
can perform a colour contrast effect, that is a sharpening 
effect if 1)( >jα , and an assimilation effect if 1)( <jα , 
that is a blurring effect. In this way, function )( jα  can 
behave as a perceptual function that can simultaneously 
provide assimilation and contrast. 

For higher frequencies (lower i values) we have to 
perform assimilation effects on the image, i.e. 1)( <jα , 
and for lower frequencies (higher i values) we have to 
perform chromatic contrast, i.e. 1)( >jα , which suggest 
an increasing function for )( jα . An approximate generic 
profile for the )( jα  function is shown in Figure 1. On the 
lower values of  the wavelet plane, i.e. the higher 
frequency planes, the )( jα  function has lower values in 
order to reduce the contribution of the higher frequency 
features, that is, to smooth the higher frequency features. 
On the higher wavelet planes, i.e. the lower frequencies, 
the )( jα  function has higher values in order to increase 
the contribution of the lower frequency features, that is, to 
increase contrast between larger areas of the image. 
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Wavelet scale (cpd)

1

α

Induction threshold (4 cpd)

Assimiliation Contrast  

Figure 1. Approximate generic profile for the )( jα  function. 

 
There are several mathematical expressions that could 

be used for this induction )( jα  function, e.g. truncated 
Gaussians, sigmoids, etc.; but a correct evaluation of this 
function should be obtained on the basis of 
psychophysical experiments. 

An important problem we have to consider is where 
we put the threshold between assimilation and contrast on 
the )( jα  function. Smith et al.2 have proposed a threshold, 
hereafter induction threshold, where it is produced in the 
human visual system. They propose 4 cpd (cycles per 
degree) as the boundary between the two complementary 
induction mechanisms, i.e. assimilation and contrast.  

Since the visual angle is the angle a feature presents 
from the human observer point of view, a feature shows a 
different visual angle depending on the distance from the 
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observer. The larger the distance, the smaller the visual 
angle the feature shows. Hence, given a fixed visual angle, 
the number of image pixels inside this visual angle 
depends on the distance at which the image is observed. 

The induction threshold value of 4 cycles/degree 
means that if an observer sees a feature which shows more 
than 4 cycles of variation inside a visual angle of 1 degree, 
this feature is blurred; on the opposite, if the observer sees 
a feature which shows more than 4 cycles/degree, the 
feature is enhaced. 

We can define this induction threshold value in the 
image as a concrete spatial image frequency. For example, 
if the image is observed at a close distance, the threshold 
will be on the higher spatial image frequencies; since only 
the higher image frequencies will be contained into the 1 
degree visual angle; on the opposite, if the image is 
observed at a large distance, the threshold will be on the 
lower frequencies. 

Therefore, the )( jα  function depends on the 
observation distance, and it is introduced as a shifting of 
the j parameter, that is, as a shifting of the )( jα  function 
along the horizontal axis. This parameter will be denoted 
as jth. When observing the image at lower distances, the 

)( jα  function is shifted to the lower values of the wavelet 
scale (higher frequencies), i.e. to the left side of Figure 1. 
This way, the higher frequency planes (lower j values) of 
the )( jα  function has higher values, that is, their values 
are increased, which means that they are not assimilated 
but contrasted. Lower frequency planes (higher j values) 
are contrasted since the )( jα  function value is greater. On 
the other side, when observing at a large distance, the 

)( jα  function is shifted to higher values of the wavelet 
plane (lower frequencies), i.e. to the right side of Figure 1. 
This way the higher frequency planes (lower j values) of 
the )( jα  function has lower values, that is, their values are 
reduced, which means that they are strongly assimilated. 
Lower frequency planes are less assimilated or, in the case 
of the lower frequency planes, slightly contrasted. 

Since several authors4,6 suggest a maximum 2
3=m  

value for the chromatic contrast between features, the 
)( jα  function has to be defined taking into account this 

restriction. Therefore, we have to define an )( jα  function 
such that mj ≤≤ )(0 α .  

Opponent colour space is the colour representation 
usually used when modelling human colour visual system. 
Therefore, the above proposed algorithm has been applied 
on every opponent coordinate. This pose the question 
whether the same )( jα  function has to be applied to every 
opponent colour coordinates. Since intensity channel 
contains most of the spatial resolution information and the 
other channels mainly contain the chromatic information, 
we should use different expressions of )( jα  for every 
channel. Since psychophysical experiments should be 
performed to establish these differences, as a first 
approximation we applied the same function to every 
opponent channel. 

Results 

To test the behaviour of the model, two different kind of 
images where used. A synthetic image which contains two 
gratings with different spatial frequency, and some real 
scene images.  

The synthetic image is used to test the behaviour of 
the method on grating images. In Figure 2. we show the 
original synthetic image with two different spatial 
frequencies on both sides. The perceived image obtained 
is shown in Figure 3. In Figure 4, we can see a profile 
from a row of the original synthetic image, and the values 
of this row when the perceptual operator is applied. High 
frequency features are clearly assimilated producing an 
almost uniform colour, showed as a reduction of the 
radiometric range values. In the low frequency right half 
of the image, situation is the opposite: wide stripes are 
contrasted, showed as an increased radiometric distance 
between them. 

 
 

 

Figure 2. Synthetic image to apply the perceptual operator. 

 

Figure 3. Perceptual image obtained from Figure 1, taking 
(jth=2). 
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Figure 4. Profiles of a row from the original image (top) and 
the perceptual image (bottom). 
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In Figure 5 two real scene images are shown, which 
present high frequency features, candidates to be 
assimilated, as the forest leaves and the painting grains; 
and some global low frequency features showing contrast 
of colours between trees and painting features. 

In Figure 6, different values for the induction 
threshold jth have been applied on the forest image. 
Although it is inherently a high frequency image, its high 
frequency features are blurred depending on the induction 
threshold applied, but the color of the low frequency 
features is not affected by this blurring, always showing a 
highly contrasted yellow color. 

In Figure 7 we show several perceptual images of the 
painting image, with the same effects that in Figure 6. 
Painting grains are assimilated but the contrast between 
more general features is enhanced, as the black and blue 
blobs. 

Another example is shown on Figure 8, being both 
the original and a perceptual image on the upper row. On 
the lower row, details of these images are shown. The 
assimilation effect is clearly visible as a smoothing of the 
water surface at the same time that a contrast effect can be 
seen as a reddening of the red cork floats and a general 
colour contrast in the swimmer skin and water blue colour. 

Some drawbacks of the method can be seen in Figures 
9-10. The assimilation or contrast is performed based on 
the feature frequency, and the method does not distinguish 
between isolated high frequency features, edges or wide 
zones containing many high frequency features. Since the 
edge between the nose and the mandrill cheek is a high 
frequency feature, an assimilation is performed, hence, a 
blurring is obtained and the edge is smoothed. Another 
effect can be seen on the detail image of the single chin 
hair. This hair should be contrasted since it is in a dark 
background, but it is assimilated with the background, 
showing a blurred appearance. In figure 3, edges between 
wide blue and yellow stripes are smoothed, while only the 
left side narrow stripes should be assimilated. 

The )( jα  function only depends on the wavelet scale 
and the image observation distance, but it does not depend 
on the concrete pixel we are processing. That is, for a 
given j wavelet scale, the )( jα  value is the same scalar 
value for all the pixels, so we are applying assimilation or 
contrast depending only on the global frequency we are 
dealing with. These problems suggest the need for a 
method that takes into account local information, that is, 
to perform assimilation or contrast depending not only on 
the feature frequency, but also on the information 
surrounding the feature. As shown in Ref. [5], high 
frequency features are assimilated when they are above 
some value of cycles/degree, that is, when more than eight 
vertical high frequency stripes are sighted inside 1 visual 
degree. 

Conclusion 

Multiresolution wavelet representation of colour images 
allows defining a computationally unified framework to 
simultaneously perform chromatic assimilation and 
contrast depending on the frequency content of the image. 
The )( jα  function defines the chromatic induction 
process on this wavelet representation weighting the 
wavelet coefficients which describes the colour image. 

One of the drawbacks of this model is that it does not 
preserve edges. Depending on its surround features, an 
edge can be associated to a high frequency feature, for 
example a line, or to a low frequency feature, for example 
the edge of a rectangle. Assimilation or contrast has to be 
applied to the edge depending on its surrounding 
information. Since this surround information has not been 
taken into account, the present model blurs all the high 
frequency features, even those which should be contrasted 
(as in the rectangle case). 

The reason for this drawback is that weighting )( jα  
function has not been defined as a pixel dependent 
function, but it has only been defined as frequency 
dependent. This problem could be avoided defining an 

)( jα  function which depends on the information from its 
surround area, and by extension on the pixel location. 
Hence, further improvement of this method is needed. 

 
 

  

Figure 5. (Left) Image from a real scene. (Right) Detail from a 
painting. 

 

  

jth=0      jth=1 

  

jth=2      jth=3 

Figure 6. Perceptual images  obtained from the real scene 
image in Figure 3 for several induction thresholds. 
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jth=0      jth=1 

  

jth=2      jth=3 

Figure 7.  Perceptual images  obtained from the painting image 
in Figure 3 for several induction thresholds. 

 

  

  

Figure 8. Original and perceptual images (upper, left and right, 
respectively), with jth=1. Details of corresponding images 
(lower row). 

  

Figure 9. Original mandril image (left) and perceptual one 
(right) with jth=3. 

  

  

Figure 10. Details from original (top) and perceptual (bottom) 
images from mandrill images in Figure 7. 
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