
 

 

Color Selections for Characterization Charts 
T.L.V. Cheung and S. Westland  

School of Design, University of Leeds, Leeds, United Kingdom 
 

 
Abstract 

Accurate color measurement can be achieved using a 
trichromatic digital camera if the device is characterized in 
terms of CIE tristimulus values. A common practical 
consideration for any characterization method is the choice 
of the characterization target. The Macbeth ColorChecker 
DC chart, for example, is widely used for color-
characterization tasks. Whereas a great deal of work has 
been carried out to address which characterization method 
gives the best performance, rather less work has been 
carried out to investigate which characterization target is 
optimum for the characterization process. This paper 
describes methods to select optimum colors from a large 
data set of 1269 Munsell colors. The effect of color 
selection on characterization performance is compared 
(using a third-order polynomial transform) with 
performance using the 24 Macbeth ColorChecker chips 
and 166 chips from the Macbeth ColorChecker DC chart. 

Introduction 

Digital cameras can effectively be used as tristimulus 
colorimeters if they characterized in terms of CIE 
tristimulus values.1,2 Some researchers3-5 have suggested 
that multispectral imaging or, more generally, spectral 
techniques may be useful for the characterization of 
imaging devices such as cameras and scanners. Thus, a 
possible device-characterization method is to try to recover 
the spectral properties of the surfaces in the scene and then 
compute the tristimulus values from these estimated 
reflectances.4 A common practical consideration for any of 
these characterization methods is the choice of the 
characterization target. The Macbeth ColorChecker and 
Macbeth ColorChecker DC charts are widely used as color 
characterization tasks.6-9 Whereas a great deal of work has 
been carried out to address which characterization method 
gives the best performance,2,10-12 rather less work has been 
carried out to investigate which characterization target is 
optimum for the characterization process. This paper 
describes methods to select optimum colors from a set of 
1269 Munsell colors.13 The effect of color selection on 
characterization performance is evaluated (using a third-
order polynomial transform) and compared with 
performance using the 24 Macbeth ColorChecker colors 
and 166 Macbeth ColorChecker DC colors. 

Methodology 

Hardeberg14 proposed a method to select a set of 
reflectance samples that would be most suitable for the 
estimation of camera spectral sensitivity. The approach 
adopted by Hardeberg was to select spectra from a large set 

of Munsell samples such that each selected spectrum was 
as different as possible (in reflectance space) from the 
other already selected spectra. Hardeberg compared this 
so-called optimal selection method with a heuristic method 
(whereby samples with the highest chroma were selected 
for each hue) and with the samples from the Macbeth 
ColorChecker. He found that performance (in terms of 
accuracy of estimation of the camera spectral sensitivities) 
was almost as good using 20 optimally selected spectra as 
it was using the full set of 1269 Munsell spectra.14 It seems 
clear that the selection of samples for a color chart might 
be expected to have a substantial effect on the usefulness 
of that chart for camera characterization. We have 
considered three methods for the selection of samples to 
constitute a characterization chart. The simplest method is 
to randomly select either 24 or 166 samples from the full 
set of 1269 Munsell samples. These particular numbers 
were selected so that we could compare performance with 
the 24 samples of the Macbeth ColorChecker chart and 
166 unique samples from the Macbeth ColorChecker DC 
chart. When the samples were selected randomly the whole 
set was selected 10 times. Two other methods, called here 
Method 1 and Method 2, were also investigated. For 
Methods 1 and 2 the selection of the first sample is 
arbitrary and in this research a spectral reflectance with the 
biggest variance has been chosen from the data set as 
being the first sample. However, subsequent samples are 
selected according to certain optimal or sub-optimal 
procedures in a way similar Hardeberg’s technique.14  

In Method 1, n-1 samples are selected in turn (without 
replacement) from the pool of Munsell samples such that 
the ith sample (2 < i ≤ n) is selected to maximize the value 
of Qj which is defined thus 
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where ∆Ej,i represents the CIELAB color difference 
between the sample j and the ith selected sample for the 
D65 illuminant.  

In Method 2, n-1 samples are selected in turn (without 
replacement) from the pool of Munsell samples such that 
the ith sample (2 < i ≤ n) is selected to maximize the value 
of Pj which is defined thus 
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The main idea is to generate a chart where the samples 
are as different to each other as possible. The idea is 
inspired by the earlier work of Hardeberg14 but uses 
colorimetric metrics rather than spectral metrics to 
determine how ‘different’ samples are from each other. 
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Furthermore, Methods 1 and 2 are subtly different in that 
in Method 1 we find the sample that is on average as 
different as possible from the already selected samples 
whereas in Method 2 we find the sample whose closest 
neighbor (in the already selected samples) is as far away as 
possible. In both methods, however, the ith sample 
selected for the chart is selected so that it is as far away 
from the already selected samples as possible.   

The 24 colors selected from each method (Method 1, 
Method 2, Random) were used to construct a virtual 
characterization chart. A linear camera model (Equation 3) 
with known and fixed camera channel sensitivities and a 
known illuminant were used and the coefficients of a third-
order polynomial were determined to provide the least-
square mapping between sample camera responses RGB 
and tristimulus values XYZ. The RGB values were 
computed using  
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where E(λ) is the spectral power distribution of the 
illuminant, SR(λ), SG(λ) and SB(λ) are channel spectral 
sensitivities of the camera system and P(λ) is the spectral 
reflectance of the surface. The 3 × 20 third-order 
polynomial transform with the following terms,12  

 
[R G B RG RB GB R2 G2 B2 RGB R2G R2B G2R G2B B2R 
B2G R3 G3 B3 1] 

 
was used to map from RGB to XYZ. 

The 24 colors selected from each of the methods were 
used as training sets and characterization performance was 
evaluated for three testing sets: 1269 Munsell samples, 50 
Natural Color System (NCS) samples and 494 natural 
surfaces contain leaves, petals, grasses and barks. The 
procedure was repeated using a larger number (166) of 
selected samples since many typical characterization charts 
in common use often contain a few hundred samples. 

Results 

The color distributions for the training and testing samples 
are visualized in the L∗a∗b∗ color space and shown in 
Figure 1 and Figure 2 respectively.  

Table 1 shows the CIELAB color differences for the 
training performance using different sets of 24 training 
samples. The median training errors as shown in Table 1 
are generally very small for each of the training sets. It is 
no surprise that it is possible to randomly select a set of 
samples that would be more accurately fitted using the 
polynomial transform than the sets selected using Methods 
1 or 2. This is because the randomly selected samples may 
all occupy one small region in color space. This is why 
performance should be evaluated using the independent 
testing sets. Tables 2 to 4 show the testing performance for 
each of the three testing sets.  
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Figure 1. Color distributions in CIELAB space for 24 Macbeth 
ColorChecker (top left), 24 Method 1 selected (top middle), 24 
Method 2 selected (top right), 24 Best Random (bottom middle), 
24 Worse Random (bottom right) samples 
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Figure 2. Color distributions in CIELAB space for 1269 Munsell 
(left), 50 NCS (middle) and 494 natural (right) samples 

 

Table 1. Training performance (3 × 20 polynomial 
transform) using different 24 characterization samples 

 mean median min max 
ColorChecker 0.9605 1.2978 0.0562 3.5757 
Method 1 0.4094 0.5566 0.0393 1.7665 
Method 2 0.5402 0.7893 0.0232 2.4832 
Best random 0.2767 0.3731 0.0253 1.0044 
Worse random 0.4881 0.5775 0.0424 1.9022 

  
 
In general, training sets selected using Method 2 

outperform the Macbeth ColorChecker and sets selected 
using Method 1 samples for all different testing sets 
(Tables 2-4). It is likely that the poor characterization 
performance using Method 1 occurs because the selection 
algorithm chose samples located around the boundary for 
an a∗b∗ diagram and the colors have little variation of L∗ 
values. Similarly, in Hardeberg’s work the heuristic 
method of selecting samples of high chroma performed 
quite poorly.14   

The finding that 24 samples from the Munsell set can 
be selected to provide a color chart that outperforms the 
Macbeth ColorChcker chart is interesting. However, for 
most practical work on camera characterization a larger set 
of samples such as the Macbeth ColorChecker DC is used. 
For such larger training charts, is it possible to use 
selection algorithms that give enhanced performance? 
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Table 2. Testing performance (3 × 20 polynomial 
transform) on 1269 Munsell samples using different 24 
characterization samples 
 mean median min max 
ColorChecker 2.6446 3.1508 0.0870 15.5986 
Method 1 7.6956 11.2463 0.0393 45.0489 
Method 2 1.6188 2.0417 0.0232 12.7893 
Best random 2.0075 3.5099 0.0253 22.6865 
Worse random 3.0843 5.8594 0.0037 103.081 

 

Table 3. Testing performance (3 × 20 polynomial 
transform) on 50 NCS samples using different 24 
characterization samples 
 mean median min max 
ColorChecker 5.1047 6.7939 0.3976 35.9383 
Method 1 10.6863 15.3869 1.6286 148.623 
Method 2 4.9291 7.4240 0.2016 37.0342 
Best random 7.8804 14.5629 0.4484 80.1972 
Worse random 14.1560 33.4745 0.5815 211.971 

 

Table 4. Testing performance (3 × 20 polynomial 
transform) on 494 Natural samples using different 24 
characterization samples 
 mean median min max 
ColorChecker 2.3062 3.1970 0.1213 14.2437 
Method 1 7.9100 11.1994 0.5419 54.2463 
Method 2 1.1746 1.5611 0.0824 7.7807 
Best random 2.2750 3.1302 0.1176 15.6847 
Worse random 4.6145 5.3141 0.3752 123.062 

 
 
 
In Figure 3 the Macbeth ColorChecker DC samples 

(using the central 166 samples) are compared with 166 
samples selected using Method 2. Tables 5 to 8 show the 
characterization performances in terms of CIELAB color 
differences. From the tables it is evident that the chart 
selected using Method 2 performs better than the Macbeth 
DC chart for the natural (Table 8) and Munsell (Table 6) 
samples but a little worse for the NCS (Table 7) samples. 
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Figure 3. Color distributions in CIELAB space for 166 Macbeth 
ColorChecker DC (left) and 166 Method 2 selected (right) 
samples 

 

Table 5. Training performance (3 × 20 polynomial 
transform) using different 166 characterization 
samples 
 Mean median min max 
ColorChecker DC 1.0520 1.3125 0.0662 4.9712 
Method 2 1.2811 1.5056 0.1026 7.0685 

 

Table 6. Testing performance (3 × 20 polynomial 
transform) on 1269 Munsell samples using different 
166 characterization samples 
 Mean median min max 
ColorChecker DC 1.2094 1.5308 0.0778 8.5431 
Method 2 1.1110 1.3883 0.0415 8.5179 

 

Table 7. Testing performance (3 × 20 polynomial 
transform) on 50 NCS samples using different 166 
characterization samples 
 mean median min max 
ColorChecker DC 1.7203 2.8127 0.0266 17.1270 
Method 2 2.0447 3.7057 0.2563 21.7783 

 

Table 8. Testing performance (3 × 20 polynomial 
transform) on 494 natural samples using different 166 
characterization samples 
 mean median min max 
ColorChecker DC 2.2001 2.4257 0.1009 7.7301 
Method 2 1.5701 1.6881 0.2563 5.2081 

 

Discussion 

Generally, the performance of the standard charts, Macbeth 
ColorChecker (24) and Macbeth ColorChecker DC (166) 
is quite good compared to the new methods. This would 
seem to indicate that the samples for these charts were well 
selected and are appropriate for the purposes of device 
characterization. However, some performance gains were 
evident using charts selected using Method 2 when 
compared with the Macbeth ColorChecker and Macbeth 
ColorChecker DC charts. We note, however, that in this 
work the selection methods were used to select from a 
relatively small number of Munsell reflectances. It may be 
that better performance can be obtained if the number of 
samples from which the methods select is increased and, 
more importantly, the gamut of these samples is increased. 
One possible approach, which the authors are currently 
exploring, is to use a linear model of basis functions rather 
than a limited pool of samples so that the characterization 
charts could contain samples that are highly saturated and 
yet are physically reproducible. 

Moreover, this paper raises the question of how to 
assess the performance of data-driven camera 
characterization methods. If we wish to characterize a 
camera to perform well for a certain domain of samples 
then the ideal data with which to characterize the camera 
would be a set of samples that possessed the same 
statistical properties as the samples of the domain. For 
certain, well-defined, problems it may be possible to 
ascertain the statistics of the domain and derive an 
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appropriate set of characterization samples. For example, if 
we wish to develop a camera system to measure the color 
of bananas or teeth it would be sensible to select a 
characterization set containing many yellow or white 
samples respectively. For the development of an optimum 
characterization set for the general problem of color 
measurement further work needs to be carried out to 
ascertain the statistics of natural and man-made colored 
samples in the world.15   
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