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Abstract

Using multiple wave-bands is common in multispectral
imaging and remote sensing, e.g., to enable improved re-
production of colours or to detect the crop status in a field,
respectively. Computer vision methods, however, mainly
rely on monochrome or RGB wave-bands, although seg-
mentation tasks might be improved considerably using
more or other wave-bands than the standard RGB.

This paper presents and investigates a new approach
for detecting human skin using a combination of standard
RGB bands and three near infrared bands. Simulations
under changing illumination conditions and a preliminary
experiment show an improved robustness over pure RGB
based approaches.

Introduction

Robust face and hand tracking is important for applica-
tions such as face and gesture recognition in interfaces
for HCI (human computer interaction). An often used
approach to do unobtrusive tracking is computer vision.
Robust and reliable segmentation of human skin is then
crucial for the success of such a system. The segmenta-
tion may be done using cues like colour, motion, or shape.
Skin colour detection is more and more used [1] because
it is invariant to size, shape, and viewing direction. How-
ever, other materials with different spectral compositions
than skin may have the same RGB colour components as
skin, i.e. metamerism [2], and hence result in false de-
tections. Furthermore, changes in the illumination spec-
trum may cause changes in the light reflected by skin, i.e.
changes in the apparent skin colour, which may also cause
false positives or negatives [3].

These problems might be overcome using other wave-
bands than the three RGB bands or more bands, which is
commonly done in other fields like multispectral imaging
or remote sensing. Multispectral imaging got much atten-
tion in the past decade for accurate reproduction, archiv-
ing or food-inspection using 30 bands or even more in the
visible spectrum. This is usually done under controlled il-
lumination and environment conditions. A series of work-
shops has been held on multispectral imaging [4] and var-
ious end user products are becoming available, e.g. Sony

recently released a four colour CCD [5] with two bands in
the green wavelengths for better colour reproduction.

Despite the success of using multiple wave-bands in
multispectral imaging and remote sensing, this has not yet
found much attention in the computer vision community
except for some few special applications, e.g. agricul-
tural applications [6, 7]. Approaches using more than one
wave-band are usually based on the RGB bands of colour
cameras, often consumer quality cameras, e.g. webcams.

Angelopoulou et. al. [2] investigated the spectral
reflectance of skin and presented a multispectral skin
colour modelling approach using five Gaussian distribu-
tions. They suggested to capture skin reflectance with
five bandpass filters assuming the illumination is known.
In [8] it is shown that skin reflectance spectra may be used
not only to detect, but also to recognise individual peo-
ple. Other approaches for detecting skin are using near
infrared (1-3µm) and far infrared (5-8µm) cameras, re-
spectively [9, 10]. However, these cameras have low res-
olutions and are rather expensive because they cannot use
standard silicon technology which is sensitive only up to
wavelengths of 1.1µm (see dashed curve in figure 3).

In this paper a multispectral approach for skin detec-
tion under multiple illuminations is presented. In particu-
lar, a combination of standard RGB bands with three NIR
(near infrared) bands below 1µm is investigated.

The next section briefly reviews the theory used in this
paper. Then the proposed method and simulation results
are presented, which is followed by an initial experiment.
Finally the results and the applicability are discussed.

Background

The reflected light from a material may be described with
the Dichromatic Reflection Model [11] which states that
the reflected light is the sum of the material’s body and
surface reflections. Surface reflections are taking place
directly at the material’s surface without penetrating into
it. They have approximately the same spectral composi-
tion as the light source and under certain illumination and
viewing geometries they give highlights. These are not
considered in the following since they usually only occupy
small areas and they may be detected separately [11, 12].
Body reflections are due to light penetrating into the mate-
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rial where it is wavelength dependently absorbed and scat-
tered around. This reflection gives persistent spectral in-
formation about the material, e.g. its colour.

The image formation process may be modelled by
spectral integration as in eq. 1. Ci are the outputs of the
camera channels, i.e. for a colour camera i ∈ {R,G, B}.

Ci = Gi

∫
E(λ)ρ(λ)fi(λ)dλ (1)

where λ is the wavelength, E the illumination spectrum,
ρ the material’s reflectance, and fi the spectral sensitivi-
ties (examples for E, ρ, fi are illustrated in figures 1, 2,
and 3, respectively). Gi depends on the camera, and the
illumination- and viewing-geometry (photometric angles).
The output of a camera for a given reflectance ρ, thus de-
pends on Gi and the illumination’s spectral composition
and amplitude (intensity). In order to get invariant to Gi

and the intensity one may transform the RGB values to
another colour space [1, 13, 3], e.g. normalised RGB or
band ratios. Band ratios are used in the following and may
be defined as r = CR/CB and g = CG/CB . Band ratios
are not invariant to changes in the illumination’s spectral
composition.
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Figure 1: Spectra of different illuminants normalised at
λ = 560nm. Blackbody 3500-15000K (dotted), daylight simu-
lated with SMARTS2 [14] (solid), and daylight from the Joensuu
database [15] (dashed).

Marchant and Onyango [19, 20] showed that for cer-
tain illuminant families a function F of the band ratios of
a material’s reflections exists that is invariant to illumina-
tion changes within one illuminant family:

F =
r

gA
(2)

where the exponent A depends on the centre wavelengths
of the sensitivities fi. Hence, A is constant for a given
camera and may be precalculated. F is invariant to illu-
mination changes within illuminant families that may be
described by

400 500 600 700 800 900 1000 1100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

wavelength λ (in nm)

re
fle

ct
an

ce

Figure 2: Reflectance spectra of skin and other objects in visi-
ble and NIR wavelengths. Dashed thick lines for light skin (up-
per) and dark skin (lower) [16], dash-dotted for green vegeta-
tion [17], and thin solid lines for, e.g., different woods [15], red-
dish brick, and reddish metals [18].

E(λ, S) = a(λ) + u(λ)b(S) (3)

where a(λ) and u(λ) are any function of λ but not S and
b(S) is any function of S, but not λ [20]. One family of
such illuminants are Blackbody radiators, which have the
following form, when represented by the Wien approxi-
mation [18]: E(λ, T ) = c1λ

−5 exp(−c2/Tλ), where T is
the colour temperature and the parameter S in b(S) which
F is invariant to. In [20] it was shown that the family
of daylights may also be described by eq. 3. It should
be noted again that F is different for different illuminant
families.

The exponent A may be calculated from the cen-
tre wavelengths of the sensitivities. Another possibility,
which is chosen here, is to simulate the camera outputs
using eq. 1 for different illuminants. Taking the logarithm
eq. 2 gives

log(r) = A log(g) + log(F ) (4)

Hence, A may be estimated by fitting a line into the simu-
lated data.

Skin Detection

In this section F is simulated for skin and examples
of other materials under varying illumination conditions.
This is first done in the visual spectrum using the spectral
sensitivities fi of a RGB camera to simulate FV IS . Then
three sensitivities in the NIR spectrum are introduced and
FNIR is simulated. Finally, FV IS and FNIR are com-
bined.

Light sources are often characterised by their spectral
composition. General purpose light sources, such as day-
light, electric light bulbs, and fluorescent lamps, have a
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non-zero spectrum in the visible wavelengths. Some light
sources like daylight and electric light bulbs also have
a non-zero spectrum in the NIR wavelengths. Figure 1
shows Blackbody (e.g. electric light bulb) and daylight
spectra in the visible and NIR wavelengths. However,
some artificial light sources block the NIR radiation, e.g.
fluorescent lamps. The latter are therefore not be consid-
ered further.

In [21] it was shown that most general purpose light
sources may be approximated with Blackbody radiators
when seen by a RGB camera. In the following the illu-
mination will be modelled by Blackbody radiators with
colour temperatures from 3500-15000K. It should, how-
ever, be noted here that this approximation might not be
appropriate in NIR.

Figure 2 shows reflectance spectra of skin and exam-
ples of other materials. Non-skin reflectance spectra of
17 materials were chosen that have reflectance properties
close to skin (metamer) when viewed by a RGB camera
and/or when viewed in the NIR wavelengths, respectively.
In the visible spectrum, e.g. aspen, birch, polished rose
granite are rather close to the reflectance of skin and in the
NIR, e.g. vegetation is very similar to skin reflectance.
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Figure 3: Spectral sensitivities. Solid lines: RGB sensitivities
(400-700nm) of JAI CV-M90 and three sensitivities in the NIR
wavelengths (800-1000nm). Centre wavelengths are 850, 900,
and 950nm. Dashed line: JAI CV-M4+.

Visible Band

The RGB outputs of a camera are simulated by spectral
integration (eq. 1) using the RGB sensitivities in figure 3,
the reflectance spectra in figure 2, and varying illumina-
tion conditions with colour temperatures from T=3500-
15000K and ∆T=100K. FV IS is calculated using the band
ratios r = CR/CG and g = CB/CG. Figure 4 shows the
simulation result of FV IS .

It can be seen that several materials fall together with
skin, e.g. aspen and birch. This would result in false posi-
tives and/or negatives when using a colour based skin/non-

skin classifier. It should be noted that this is not a particu-
lar problem for band ratios but also the case in other colour
spaces, see e.g. [13].
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Figure 4: FV IS as function of the colour temperature. Dashed
thick lines for skin, thin solid lines for other materials.

NIR Band

The spectral information in the NIR band may be ex-
ploited to distinguish skin from materials with similar
FV IS values, i.e. use of additional sensitivities in NIR.
The reflectance curves of skin have a characteristic local
minimum at around λ = 950nm, figure 2, that is due to the
high water content in skin. Also other biological material
have local minima around that wavelength, however only
vegetation has a similarly pronounced minimum.

A function FNIR might be introduced using the same
approach as above for the visible band (FV IS). This re-
quires three bands in the NIR in order to get two ratios
rNIR = CNIR1/CNIR2 and gNIR = CNIR3/CNIR2.
These bands might be found iteratively by maximising
∆FNIR between skin and other materials. Here it was
chosen to fix one sensitivity to the local minimum at
λ = 950nm and only iterate over two sensitivities. Due to
the sensitivity range of silicon technology (300-1100nm,
dashed line in figure 3) they had to be below 950nm. Fur-
thermore, the sensitivities were modelled as standard op-
tical bandpass filters, e.g. available from Andover corp.,
NH, USA.

The sensitivities are shown in figure 3. The simulation
result is shown in figure 5. It can be seen that the FNIR of
skin is rather close to that of vegetation.

Combining Visible and NIR

Figure 6 shows FV IS as function of FNIR. It can be seen
that the skin distributions are now separated from the other
materials’ distributions. In this simulation additive normal
zero mean distributed noise with a signal to noise ratio
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Figure 5: FNIR as function of the colour temperature. Dashed
thick lines for skin, thin solid lines for other materials.

(SNR) of 68dB was added. The SNR definition in eq. 5
was used.

SNR = 20 log10

(
S

N

)
(5)

The JAI CV-M4+ (figure 3) has according to the data-
sheet a SNR >57dB. Figure 7 shows the same simulation
but with SNR = 60dB. Now the aspen and skin distribu-
tions start to overlap, which is due to FNIR.
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Figure 6: FV IS as function of FNIR simulated with 68dB SNR.
Light skin (+), dark skin (4), other materials (·).

NIR Experiment

This section shows a preliminary experiment in the NIR
band in order to verify whether the local minimum of skin
reflectance at λ=950nm is big enough to be detected with
a state of the art camera. Images of skin and every day ob-
jects such as wood, fruit, water, cloth, plastic, vegetation
etc. were captured using two optical bandpass filters with
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Figure 7: FV IS as function of FNIR simulated with 60dB SNR.
Light skin (+), dark skin (4), other materials (·).

centre wavelengths λC1=830nm and λC2=950nm, respec-
tively, and bandwidths λBW1=20nm and λBW2=40nm,
respectively. Figure 8 shows an example taken with a
830nm filter. In figure 9 the ratio between the λC1=830nm
and λC2=950nm images was taken and thresholded. As
expected from the simulation, materials with high water
content may not be removed in the NIR, however, wooden
and other materials are removed.

Figure 8: Image with human skin and other every day materials
captured under tungsten light with a JAI CV-M4+ camera and
an optical bandpass filter with λ=830nm centre wavelength and
20nm bandwidth.

Discussion

This paper suggested and investigated the use of standard
RGB bands combined with three NIR bands for skin de-
tection under changing illumination conditions. Simula-
tions with reflectance spectra of skin and other materi-
als with reflectance characteristics similar to skin show
promising results.
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Figure 9: Thresholded ratio between two images captured with
filters of λ=830nm and λ=950nm, respectively, centre wave-
length.

Furthermore, preliminary tests using only the ratio be-
tween two real images of skin and other materials captured
with bandpass filters of 830nm and 950nm, respectively,
show that the local minimum around 950nm might be used
as a feature for skin detection when using blackbody illu-
mination.

The approximation of light sources with blackbody ra-
diators has been proven to work in the visible band and
it is also a good approximation in NIR for tungsten light
bulbs. However, daylight spectra deviate considerably
from blackbody radiators in the NIR, particularly around
the local minimum of skin. It has to be verified whether
the proposed NIR sensitivities also work for other light
sources such as daylight, figure 1. This might be done
using SMARTS (Simple Model of Atmospheric Radiative
Transfer of Sunshine) [14] to simulate daylight.

Currently 17 materials have been tested. A more ex-
tensive simulation with spectra of more materials is nec-
essary. In the visible spectrum large databases exist, e.g.
[22], which could be used. In the NIR there is, to the
knowledge of the authors, less data available.

As already shown by the four colour Sony CCD, new
generations of imaging sensors could have more than the
standard RGB sensitivities, e.g. in the NIR band and by
that enabling robust skin detection.
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