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Abstract 

Marchant and Onyango (J. Opt. Soc. Am. A 17, 1952, 
2000) and Finlayson and Hordley (.J. Opt. Soc. Am. A 18, 
253, 2001) proposed the definition of an invariant 
parameter that can be applied to each pixel of a colored 
image in such a way that this image can be changed into a 
grey-scale one, in which color constancy is obtained with 
complete precision whenever the illuminant is Planckian-
type and the three sensors which capture the image have 
Dirac’s delta spectral sensitivities. In this work we look 
more closely at one of the points touched upon in the 
above-mentioned papers, which still needs to be studied in 
more detail: the optimal position of their spectral 
sensitivity maximums when we have real daylight  
illumination. We used an exhaustive search method, 
finding the best behaviour for the sets of spectral 
maximums: (645, 675 and 595 nm) and (550, 610 and 400 
nm). Next, we extend our study to more realistic sensors 
considering for them a gaussian-type spectral sensitivity 
with 30nm half-bandwidth and maximum sensitivity at the 
wavelength of the two above mentioned triads. We 
compared the results obtained with these sensors with 
those obtained for real sensors, like commercial CCD 
cameras sensors. The performance of our sensors improves 
that obtained for the rest of sensors, also those employed 
by other authors.  We have applied these results to natural 
scenes with the aim of classifying different kinds of 
vegetation. 

Introduction 

One of the ways of obtaining artificial vision systems 
which satisfies color constancy has been to define invariant 
descriptors to the possible changes in the illumination over 
an scene. Marchant and Onyango1 and Finlayson and 
Hordley2 proposed the definition of an invariant parameter 
that can be applied to each pixel of a colored image in such 
a way that this image can be changed into a grey-scale one, 
which will remain the same whatever the illumination of 
the scene in question. With the aid of this invariant 
parameter, color constancy is obtained with complete 
precision whenever the illuminant is Planckian-type and 
the three sensors which capture the image have Dirac’s 
delta spectral sensitivities. Marchant and Onyango3-4 have 
extended their proposed invariant to encompass daylight. 
Their method is based on the possibility of expressing the 
logarithm of the spectral power distribution (SPD) of 
daylight in terms of a linear model with only one free 
parameter. 

In this work we look more closely at one of the points 
touched upon in the above-mentioned papers, which still 
needs to be studied in more detail: the possibility of using 
sensors with non-monochromatic spectral sensitivity and, 
simultaneously, the optimal position of their spectral 
sensitivity maximums. 

Method 

With three sensors of Dirac’s delta spectral sensitivity at 
wavelengths λ1, λ2 and λn, the invariant is defined as  
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Cλ  = gρ(λ)E(λ) being the response of the sensor in 
question to the spectral radiance generated by the 
reflectance object ρ(λ) illuminated by the SPD E(λ). The 
term g includes the gain-factor and geometric components. 
The expression of exponent A12 will depend upon the 
mathematical representation made of the illuminants. Also 
the value of A12 can be determined experimentally.  

The validity of the invariant will depends on whether 
the spectral representation of daylight is accurate enough 
and whether the hypothesis of very narrow-band sensors 
can be applied. Whatever the case, if the sensors are either 
broad-band or real, the validity of the invariant can be 
studied by representing for any group of objects and 
illuminants the logarithm of yλ2 versus that of yλ1 , taking 
the values of Cλ as the response of the sensors, the 
sensitivities of which are maximum at the corresponding 
wavelength. If the invariant is valid for a set of sensors this 
representation will generate for each object under whatever 
illuminant, points over a straight line, the slope of which, 
1/A12, must be the same for all the objects involved. 

We took as our objects 24 samples from ColorChecker 
and 64 SPD’s of daylight measured on days with different 
atmospheric conditions and times of day ranging from 
midday to morning and evening twilight hours5. 

Results 

First we tested monochromatic sensors in order to obtain 
the best three wavelengths along the visible spectrum 
which optimize the correlation coefficient and the 
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uniformity of the slope in the representation of the 
logarithm of yλ2 versus that of yλ1 for the different objects. 
For that we used an exhaustive search method, finding the 
best behaviour for the sets (λ1= 645, λ2= 675 and λn=595 
nm) and (λ1= 550, λ2= 610 and λn=400 nm). For this 
second triad we fixed a minimum interval of separation 
between maximum sensitivities of sensors of 50 nm, in 
order to cover more visible spectrum.  

 

Figure 1: (log yλ2 ) versus  (log yλ1 ) for 24 objects and 64 
daylight SPDs. Monochromatic sensors (λ1= 450, λ2= 610 and 
λn=540 nm)  

 

 

Figure 2: (log yλ2 ) versus  (log yλ1 ) for 24 objects and 64 
daylight SPDs. Monochromatic sensors (λ1= 550, λ2= 610 and 
λn=400 nm)  

 
The performance of these sensors improves that 

obtained for the sensors employed by Marchant and 
Onyango1 (λ1= 605, λ2=530 and λn=440 nm) and Finlayson 
and Hordley2 (λ1= 450, λ2= 610 and λn=540 nm). In figures 
1-2 we show two examples of the representations of (log 
yλ2 ) versus  (log yλ1 ). 

 In table 1 we show the results for different sets of 
monochromatic sensors, where we can observe how the 
average correlation coefficient varies for the different sets. 
For this kind of sensors, the variation in the value of the 
slope for the different objects is nearly null.  

 

Table 1: Values of average slope and correlation 
coefficient obtained for representations like Figs. 1 and 
2 using monochromatic sensors with maximum 
sensitivities at λ1, λ2 and  λn.. 
λ 1 
λ 2, 
λ n 

Average 
slope 

Average 
correlation 
coefficient 

A12 

645 nm, 
675 nm 
595 nm 

1.596 0.999 0.627 

550 nm 
610 nm 
400 nm 

1.295 0.989 0.772 

450 nm 
610nm 
540 nm 

-0.634 0.887 -1.578 

605 nm 
530 nm 
440 nm 

0.562 0.977 1.778 

Table 2: Values of average slope and correlation 
coefficient obtained for representations like Figs. 1 and 
2 using  sensors with maximum sensitivities at λ1, λ2 
and  λn and 30nm bandwidth.  
λ 1 
λ 2, 
λ n 

Average 
slope 

Average 
correlation 
coefficient 

A12 

645 nm, 
675 nm 
595 nm 

1.539 
(σ=0.026) 

0.999 0.650 

550 nm 
610 nm 
400 nm 

1.320 
(σ=0.017) 

0.989 0.758 

450 nm 
610nm 
540 nm 

-0.617 
(σ=0.037) 

0.892 -1.617 

605 nm 
530 nm 
440 nm 

0.563 
(σ=0.017) 

0.978 1.776 

CCD 0.467 
(σ=0.059) 

0.964 2.135 

 
Next, we extend our study to more realistic sensors 

assuming  a gaussian-type spectral sensitivity with 30nm 
half-bandwidth and maximum sensitivity at the wavelength 
of the two above mentioned triads. We compared our 
results with those obtained for commercial CCD camera 
sensors. In table 2 the values of the average slope, its 
standard deviation and the average correlation coefficients 
are shown. Again best results are obtained for sensors with 
maximum sensitivity at (λ1= 645, λ2= 675 and λn=595 nm). 
In figure 3 we show the representations of (log yλ2 ) versus  
(log yλ1 ) for these non-monochromatic sensors. 
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Figure 3. (log yλ2) versus (log yλ1 ) for 24 objects and 64 
daylight SPDs. Gaussian-type sensors (30nm half-bandwidth) 
and  (λ1= 645, λ2= 675 and λn=595 nm).  

 
We tested our best results for the spectral sensitivity 

of the sensors by applying the invariant to natural scenes 
provided by Nascimento et al.6 in order to recognize 
flowers in vegetation. In figure 4 we show the grey-scale 
image obtained by applying the invariant definition with 
the Gaussian-type sensors (30nm half-bandwidth) and  
(λ1= 645, λ2= 675 and λn=595 nm). 

 

Figure 4. Invariant image of one of the natural scenes of 
Nascimento et al6. Gaussian-type sensors (30nm half-
bandwidth) and (λ1= 645, λ2= 675 and λn=595 nm).   

 
 For this scene we know the spectral reflectance values 

of the objects involved and simulated different natural 
scenes with the different daylight SPDs previously tested. 
For each daylight and non-monochromatic sensors sets we 
obtained invariant histograms which show bi-modal 
distributions. When different daylight SPDs are employed 
the histograms obtained with the gaussian-type sensors 
with 30nm half-bandwidth and (λ1= 645, λ2= 675 and 
λn=595 nm) superimposed nearly perfectly, figure 5.  For 
the other sensors studied, the histograms are shifted for the 
different daylight and recognition of objects is difficult. 
Thus, in figures 6-9 we can have difficulties to fixed 

invariant values intervals where the recognition of objects 
can be made invariant to illumination conditions. 
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Figure 5. Histograms for grey-scale images of the scene 
represented in figure 4 when different daylight SPDs are 
simulated. The definition of the invariant is applied with non-
monochromatic gaussian-type sensors of maximum sensitivities 
(λ1= 645, λ2= 675 and λn=595 nm). The color temperatures for 
the  daylight SPDs are: 3757, 4425, 5555, 9091, 12449 and 
32753 K.  
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Figure 6. The same as figure 5 for non-monochromatic 
gaussian-type sensors of maximum sensitivities sensors (λ1= 
550, λ2= 610 and λn=400 nm).  
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Figure 7. The same as figure 5 for non-monochromatic 
gaussian-type sensors of maximum sensitivities sensors (λ1= 
605, λ2=530 and λn=440 nm).  

CGIV 2004: The Second European Conference on Colour Graphics, Imaging and Vision

108



 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7
x 10

4

invariant value

nu
m

be
r 

of
 p

ix
el

s

 

Figure 8. The same as figure 5 for non-monochromatic 
gaussian-type sensors of maximum sensitivities sensors (λ1= 
450, λ2= 610 and λn=540 nm) 
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Figure 9. The same as figure 5 for commercial CCD camera 
sensors. 

Conclusions 

This work has served us to present the good results 
generated for real measurements of daylight using the 
invariant parameter defined in the form expressed in 
Equation (1). We have not employed other techniques to 
improve the performance of the sensors7-9, such as  spectral 

sharpening, which will be investigated further.  In our case, 
given a natural scene in which we know the value in each 
pixel of the response to this type of sensor, we can reliably 
find a parameter that does not vary according to changes in 
daylight illumination. That is to say, we can move to a 
scene described in a scale of greys in which shadows are 
eradicated and the objects can be selected according to the 
value of F12. Object-recognition experiments based on this 
value have been made in previous studies, Marchant and 
Onyango1 and Finlayson and Hordley2, with satisfactory 
results when the elimination of shadows to distinguish 
ground vegetation is called for, or to recognise different 
types of objects. In our case we have applied these results 
to natural scenes with the aim of classifying different kinds 
of vegetation.  
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