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Abstract 

In this paper, we develop a new method for extracting 
invariant features for textured color surfaces moving in a 
3D environment. This method is based on separation 
between chrominance which characterizes color of the 
surface, and intensity which characterizes the texture 
aspect. Invariant features for color are modeled by the first  
moments of the histograms of dominant wavelength and 
purity factor computed in the CIE-XYZ space. Invariant 
criterion for texture is computed by considering the 
evolution of the auto correlation function of gray-level 
images of surfaces in movement. Its value corresponds to 
the sum of the coefficients of the discrete correlation 
matrix. The relevance of this approach was tested on a 
synthetic database and also on real images of colored 
textured planes moving in the 3D-space. The three criteria 
which have been computed on these images appeared to be 
relevant and can be exploited to extract invariant signature. 

1. Introduction 

Color and texture are two relevant attributes allowing to 
extract image signatures. Numerous methods aiming to 
extract these signatures have been proposed in order to 
classify and search images in a database of images. Among 
these, are the methods based on the modeling of 
histograms,9 on wavelet correlation,10 on co-occurrence 
matrices,4 on color moments.6-8 Unfortunately, theses 
methods do not take into account the relative displacement 
between the camera and the studied surface. This 
displacement occurs when, for example, an image 
sequence is obtained by a camera with a changing shooting 
position with respect to the analyzed scene, or when a 
dynamic scene is being filmed from a fixed position. In 
order to avoid this drawback, different works have been 
achieved. Healey and Wang5 developed a method for 
recognizing color texture independent of rotation, scale 
and illumination. Texture is modeled using Zernike 
moments of multispectral correlation functions. Funt and 
Finlayson3 developed a method called color constant color 
indexing based on the coefficient model for sensor 
response that compares distributions of color ratios. 
Adjeroh and Lee1 use the concept of color constancy to 
ensure invariance and then use some neighborhood 
considerations to introduce information about structure in 
the indices. However, in this case, one problem is the 
difficulty posed by highly textured images. 

In this article we develop a new method to 
characterize colored textured surfaces moving in a three 

dimensional environment. This method is based on the two 
following points. First, the choice of a color representation 
space which do not depend on this type of movement, and 
second, the use of invariant criterion which characterizes 
the texture of the moving surface, independently of its 
color. For the first point, we choose the IHS space or a 
derived version and we characterize color by means of the 
moments of the histograms of Hue and Saturation 
components. For the second point we start with our 
previously work,2 showing how to develop a method for 
invariant feature extraction on gray-level textured images 
undergoing affine transformation. This method is 
performed by transforming the autocorrelation function of 
the studied gray-level images followed by determination of 
an invariant criterion which is the sum of the coefficients 
of the discrete correlation matrix. In this paper, we 
consider that the sizes of the studied surface are always 
much smaller than the average distance between the object 
and the camera, so that we can use affine transformation. 
We present experimental results which confirm the 
relevance of this approach. 

2. Theoretical Study 

2.1. The Space Color Used 
Representation of a color can be done in different 3-D 

spaces such as RGB, IHS, CIE-XYZ or CIE-Lab space and 
others. For our purpose, we have to choose a space which 
clearly distinguish hue and saturation components of a 
surface, whereas intensity will be separately treated. IHS 
and XYZ spaces are two good candidates and for 
computation commodity, we use the XYZ space in the 
following. 

The CIE  XYZ space is defined by the transformation 
of RGB space  according to the relations:  
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and the chromaticity diagram (x,y) is deduced from (1) by 
defining:  
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From a given image, a set of points (x,y) is obtained, 
each point being characterized by its wavelength λ(x,y) and 
its purity factor p(x, y) (figure 1). In order to deal with a 
monodimensional problem, a system of polar coordinates  
(ρ ,θ) is used, in which each point M(x, y) is referenced in 
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relation to the blue primary color (point B in figure 1). For 
simplicity, the wavelength λ of a current point is measured 
through the angle ),( OBOM=θ . The colors actually used 
being located inside the triangle RGB (figure 1), we define 
the purity factor as  
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Figure 1. Representation of a point M in the chromaticity 
diagram (x,y) 

 
Dominant wavelength λ, measured by angle θ, and 

purity factor p are then used to characterize color of the 
moving surface under study. For practical purposes, these 
values are digitized as θk and pk, over a range of values 
k∈[1,N]. 

2.2. Invariant Feature for Color 
 We make the hypothesis, physically realistic, that the 

dominant wavelength and the purity factor are very little 
affected by the relative movement between the surface and 
the camera. Then, we characterize these values by means 
of one-dimensional moments of their histograms h(θk) and 
h(pk) respectively. We compute the 1D moments of these 
histograms by taking the angles θ in the range [0, 360°] 
with a step of one degree and in the interval [0,100] for the 
purity factor, with a step equal to one. The 1D-nth order 
moments corresponding to these histograms are defined 
by:  
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With these definitions, the 0th-order moments are all 
equal to 1 and will therefore not be taken into account.  

2.3. Invariant Feature for Gray Level Texture 
In this section, we briefly recall our farmer results2 on 

feature extraction of a textured plane moving in a 3-D 
space. It should be noted that colored images are firstly 
translated in gray-level images. The movement of the 
textured plane is broken down into a 3D rotation followed 
by a 3D translation. The different textured images obtained 
by a camera can be linked by an affine transformation H 
whose parameters depend on the orientation and the 
location of the 3D textured plane. To do this, the 
normalized autocorrelation function is viewed as a surface 
on which we consider a plane section (P) at a fixed height 
h. The plane section intersects the surface defined by ACF 
along an outline (A). We model this curve (A) by an ellipse 
which verify the classic equation in the (x,y) plane: 

 α β γ. . .x y xy2 2 1+ + =      (4) 

Let C be the normalized autocorrelation function of a 
given texture. We summarize the different steps which 
allow us to make the correlations after affine 
transformations invariant as follows:  

 
- Extract a plane section with height h from 

autocorrelation function C. 
- Calculate the value of parameters α, β and γ of the 

corresponding elliptic outline. 
 

-  Obtain matrix       Htinv
invt

=










1 0

1
,  

where                 tinv = −
γ
β2

. 
 

- Apply affine transformation H tinv
 to C to obtain 

autocorrelation function Ct
. 

-  Extract a plane section with height h from Ct
. 

- Calculate the value of parameters α, β and γ of the 
corresponding elliptic outline. 

-  Obtain  matrix  
H µ ω µinvx

inv inv

=










1 1 0

0 1 / ,   

where     α
βµ 1k
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- Apply affine transformation H µωinv
 to Ct

 to obtain 
autocorrelation function Ctµω . 

-  Calculate the sum  

S rij
i j D

=
∈
∑

( , )

  

 of the coefficients of the discrete correlation matrix 
∆
Ctµω . 

 
D represents the part of the correlation matrix which 

includes a set of points around the central point. 
Criterion S constitutes an invariant feature of images 

of a textured surface undergoing translations and 3D 
rotations. 
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Experimental Results 

In order to test the validity of the proposed method, we 
carry out our experiments from two databases. The first 
one consists in four texture families which each contains 
144 samples corresponding to different rotations and 
translations of an original textured surface.11 These 
samples are computed from the four reference images as 
shown in figure 2. The second database is constituted by 
two families of eight images of real textured plane. Two 
colored planes are used, called “leopard-skin” and “fruits”. 
These images have been taken with different distances and 
positions between the camera and the textured plane. 
Figure 3a and 3b show an example of representative 
samples. 
 

 

GB04 GG02 

 

GJ01 GL02 

Figure 2. The four reference images of the synthetic database 

 
For each sample of these two databases, we compute 

the criteria Mn(θ), Mn(p) and S defined in sections 2.2 and 
2.3. For clarity of presentation, only the three criteria 
M1(θ), M1(p) and S are shown. Figure 4 shows the values 
of these criteria for the synthetic database whereas figure 5 
regroups these values for the whole of real database. 

An analysis of the figure 4 shows that, for the images 
studied here, these three criteria are good invariant 
features, with respect to the concerned transformation. 
This figure also shows a partial overlap of some value 
intervals of criteria M1(θ) and S associated with each 
texture family. However, we can see that the association of 
the two criteria allows us to correctly discriminate the four 
texture families. 

In the case of real images, figure 5 shows that the 
three criteria studied are also good invariants, especially 
M1(θ) criterion, and allow us to obtain a correct 
discrimination of all the images of real database. 
 

  
  

  

Figure 3a. Four samples of the real colored textured surface 
“leopard-skin” under different distances and rotations. 

 

  
  

  

Figure 3b. Four samples of the real colored textured surface 
“fruits” under different distances and rotations. 
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Figure 4. Graphical representation of criteria applied to four 
image family of synthetic database. 4a)- criterion M1(θ), 4b)- 
criterion M1(p)   4c)- criterion S 

Conclusion 

We have presented a method to extract invariant features 
for colored textured surfaces moving in a 3-D space. This 
method is based on separation between chrominance which 
characterizes only color of the surface, and intensity which 
characterizes the texture aspect of studied surfaces. 
Invariant features for color are modeled by the first 
moments of the histograms of dominant wavelength and 
purity factor computed in the XYZ-space. Invariant 
criterion for texture is computed by considering the 
evolution of the autocorrelation function of images of 
surfaces in movement. 
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Figure 5. Graphical representation of criteria M1(p), M1(θ) and 
S for the eight samples of the two families “leopard-skin” and 
“fruits” 

 
 

The relevance of this new approach was tested on a 
synthetic database of 576 samples and also on images of 
colored textured planes moving in the 3-D environment. 
The three criteria which have been computed on these 
images appeared to be relevant and can be exploit to 
extract invariant signature for image indexing. 
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