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Abstract 

The aim of this paper is to explore the space of diagonal 
colour constancy solutions. In gamut mapping 
approaches, finding the illuminant of a scene implies to 
find the set of feasible maps and afterwards to apply 
certain decision criterion to select a proper solution. This 
last step has been usually based on a heuristic 
computation over the feasible set. However an analysis on 
how are the solutions of this feasible set is not known by 
the authors. This is the essential contribution of this 
paper, since we explore on a reduced version of the 
feasible set some specific properties of the solutions. 
Criteria such as, maximum volume, feasible set average, 
maximum area on chromaticity plane or grey world 
solutions have been explored, and this works conclude 
that this usual criteria do not always assure finding 
optimal solutions, and therefore, further work remains to 
be done in this sense. Finally, we outline that some 
criteria related to the position of the optimal mapped 
image on the chromaticity plane should be taken into 
account. 

Introduction 

Colour constancy is the ability of the human visual 
system to build internal colour representations without the 
effects of the scene illuminant. A complete answer on 
how human visual system reaches this capability has not 
given yet. However, there are several theories on how it 
would be.1-3 

In computer vision, colour constancy is a main focus 
of interest, since a good efficiency on automatic image 
understanding requires a stable, i.e. illuminant invariant, 
representation of colour images. Hence, a wide range of 
colour constancy methods have been proposed in the 
literature.5-11 The performance ratios of these methods 
vary depending on how it is measured,4 but still does not 
exist a colour constancy method that performs exactly on 
all sort of images and under weak assumptions. In this 
framework, methods based on the gamut mapping 
approach5 can be regarded as the best in some of the 
performance rankings. In this work we will focus on the 
properties of the solutions given by this approach. The 
analysis will be done on synthetic images since error 
measurements are straightforward and free of the 
influence of sensor errors.  

Gamut mapping methods do not estimate the scene 
illuminant of an image, but they directly estimate the 
transform from this unknown illuminant to a canonical 
one.  The transform of an illuminant change is usually 
modelled by a linear diagonal model,12 
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Then, to solve the colour constancy problem implies 
to estimate three parameters, named α , β  and γ , which 
are the components of the diagonal matrix that maps a 
colour under an unknown illuminant, (RU GU BU), to a 
colour under a canonical illuminant, (RC GC BC). It is 
obvious to note that we are dealing with an under-
constrained problem since we only know (RU GU BU) 
from every pixel of a given image. To deal with this 
problem, gamut mapping methods usually act in two 
steps, firstly, computing the set of all feasible maps, and 
secondly, selecting the estimated map.  

The first step finds the limits, within the space of all 
possible maps for the set of feasible solutions. That is the 
space of all possible (α , β , γ ) solutions. We will call it 
the space of maps. These are the solutions that assure to 
map the image gamut inside the canonical gamut, 
henceforth, the feasible set.  

The second step involves applying a heuristic 
criterion to select one of the feasible solutions. Different 
heuristics have been proposed for this selecting criterion, 
such as the map which maximizes the volume of the 
mapped image, the average of the feasible set, or the 
maximum of different norms: L1 or L2.

13  
Whilst we can find several works expending efforts 

to improve the first step of gamut mapping approaches, 
not so many efforts have been expended in discussing 
about the second step. The performance of different 
selection criteria has been recently explored in Ref. [13]. 
Because we think it is worth to go further on this point, 
we propose an empirical exploration of the feasible set of 
solutions given by a gamut mapping approach. It will 
allow exploring not the performance but the adequacy of 
these selection criteria. 

The empirical approach we propose in this paper is 
based on a sampling process of the continuous set of 
feasible solutions. By computing the error for every 
specific solution we try to extrapolate some conclusions 
about the properties of the optimal solutions. In this work 
we will regard the minimum angle error as the optimality 
criterion for the solutions. Therefore the norm of the best 
solutions will not be considered. To explore the feasible 
set we have two options: to define a sampling procedure 
on the (α , β , γ ) space, in order to get a subset of the 
feasible solutions obtained by a general gamut mapping 
algorithm5; or directly to build a heuristically reduced set 
of feasible solutions. We have worked on the second 
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option and we have built a constraint-satisfaction search 
tree based on a specific assumption about the solutions. 

We have organized the paper as follows. Firstly, we 
explain the search method we have used to build a 
sampled version of the feasible set. Secondly, we explore 
within the sampled version of the feasible set showing the 
error solution with respect to different criteria. Finally we 
derive some conclusions.  

Sampling the Feasible Set 

The goal of this section is to define a procedure to 
directly build a reduced set of feasible solutions. To do 
this, we propose to work on a search tree that gives a 
subset of maps accomplishing the constraint of being 
within the feasible set.  

In order to have a better comprehension of the map 
set, instead of directly work on the space of all (α , β , γ ) 
maps, we will work on the space of all possible 
correspondences between image surfaces and canonical 
surfaces, i.e., the latter corresponds to a set of selected 
surfaces that sample a wide range of the gamut of a 
canonical illuminant.  Hence, for a given correspondence 
we compute a diagonal matrix that approximates the 
transform of the selected image surfaces to the canonical 
surfaces. 

Thus, from a given image, I, acquired under an 
unknown illuminant, U, we extract the ),,( BGR  values 
of n surfaces,  

{ }U
n

UUU S,...,S,S)I(S 21= ,  

and given a canonical set of surfaces, denoted as 
}{ C

k
CCC S,...,S,SS 21= ,  

we can build the set of all possible correspondences 
between SU and SC, which can be expressed as 

{ }kpSSSSSSCorr i
C
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U
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C
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p

U
,..,1,...,, ;
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where n
kCorr =# , and means that we presume that 

surface U
iS corresponds to surface  

C

ipS  

when it is seen under the canonical illuminant. Then, for a 
given set of matchings we can compute n diagonal 
transforms, one for each pair of two surfaces, and their 
mean can be used to estimate a diagonal map for this 
correspondence. On this space of all possible pairs 
between image and canonical surfaces we have kn

 

possible solutions, which implies an exponential 
complexity and therefore it is hard to be computed. 

Building the set of all these solutions implies to do a 
search on a tree with n levels of depth, being k the 
branching factor, and where each complete path (from the 
root to a leaf node) of the tree represents a concrete 
solution. This will be a constraint satisfaction search 
algorithm since all the maps being out of the feasible set 
will be removed. Although, this constraint is sometimes 
very effective, still the number of solutions can be too 
large; e.g. if we work with images of 10 different 
coloured surfaces and with about 35 canonical surfaces 
we need to explore a tree of 3510 paths. 

In order to reduce the size of this tree, we need to 
reduce the size of the SU(I) and SC sets. To this end, we 
propose some assumptions on these two sets: 
Assumption 1 (existence of significant surfaces): An 
image can be approximately represented by a fixed 
number of significant surfaces, namely r, whose gamut 
nearly covers the entire image gamut. 
 
Assumption 2 (relaxed grey-world): The average of the 
significant surfaces of an image is close to grey. 
 
Assumption 3 (colour structure invariance): The most 
likely correspondences between image surfaces and 
canonical surfaces are those which maintain the colour 
structure of the image gamut. That is, relative positions 
of colour surfaces within the gamut should not change.  
 
        Apart from reducing the set of canonical and image 
surfaces, an important goal of these assumptions is also to 
ensure that an important amount of optimal maps will be 
selected with the sampling process, since the final goal is 
to explore the nature of these optimal solutions.  

Above assumptions introduce important changes on 
the sampling process. The branching factor is reduced 
thanks to assumption 3, and assumption 1 reduces the 
depth of the tree to r.  These assumptions are introduced 
into the sampling algorithm with the following steps: 
1. Selection of the r significant surfaces from SU(I) to 

SStg(I). 
2. Mapping surfaces of  SStg(I) with a grey world 

transform, it is denoted as  SGW(I). 
3. For each surface, ri ..1: , of SGW(I) we select the m 

nearest neighbours surfaces from the canonical 
surfaces, SC, denoted as, 

iNN
S  

       (see figure 1). 
4. Computing the set of all possible correspondences 

between each 

)I(Sig
iS   with its corresponding iNN

S ,  

it is given by 

  
 

  
 ====
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where r
mRCorr =# that can be significantly reduced 

depending on the number of selected values. 
5. For each element of RCorr, the corresponding 

(α , β , γ ) map is computed.  
 
Some considerations have to be explained regarding 

the step 1 of the given algorithm.  The goal of this step is 
to reduce the number of image surfaces. Based on 
assumption 1 we do the following process: 
1. Computing the extreme point of the convex hull of 

the image surfaces, (solid points of figure 2). 
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2. For each point of the previous step, the sum of 
distance to the rest of points is computed. 

3. The r points with greatest values of the previous 
point are selected as significant surfaces, (Significant 
image surfaces in figure 2), obtaining )(IS

Sig . 
 
 
 
         

 
Figure 1. r-nearest neighbours of canonical surfaces for 
significant surfaces (m=5, r=6). 
 
 

 
Figure 2. Selected Significant Image Surfaces as the farthest 
within the surfaces in the convex hull of the image surfaces 
(r=6).  

 
 
The introduction of assumptions helps us to reduce 

the number of samples of the feasible set. In the next 
section we compute the angular error obtained when 
applying each one of the computed sampling, and 
subsequently, these solutions will be explored to analyse 
the behaviour of those with minimum error. 

Exploration 

To explore how the best solutions act within the feasible 
set, we empirically work on their observation. Our work 
has been carried out with synthesized data, creating a set 
of canonical surfaces and images consisting of random 
Munsell chips. For the canonical surfaces we have 
selected 35 representative surfaces from the Munsell 
chips and the macbeth color chart. As canonical 
illuminant we have synthesized a planckian illuminant 

with CCT=6500K, and a gausian narrow-band sensor has 
been built, with centers in 450, 540 and 610 nm. With 
this configuration, the RGB values of the canonical 
surfaces have been built, i.e., we have 35 RGB values 
representing the canonical surfaces under the canonical 
illuminant. 

We have also generated several synthetic images, 
which are a set of randomly selected Munsell surfaces, 
built from their reflectances under a random illuminant, 
chosen from a set of 11 different illuminants. For these 
images we will compute the colour constancy error for 
each of the solutions generated with the reduced matching 
tree. In our experiments this tree has been computed with 
parameters, m=5 an r=6, that means we have got 6 
significant surfaces of an image and these have been put 
in correspondence with the 5 nearest surfaces of the 
canonical gamut for each image surface. This implies to 
explore a set of mr=56=15625 possible maps. 

In this work, we have used as optimality criterion the 
angular error between the recovered RGB color vectors 
for an estimated solution and the true RGB color vector 
under the canonical illuminant, considering we know the 
image illuminant, the RMS error of the angular error for 
the r surfaces is used.4 

Since the angle between two RGB color vectors only 
rate the error estimating the chromaticity of the surfaces, 
we will only focus on the recovery of the chromaticity 
properties of the image surfaces as they could be seen 
under the canonical illuminant, and not their intensity. 
The analysis of this error over a large range of solutions 
within a large set of images, has taken us to conclude 
some interesting properties on the map selection criteria. 

In some gamut mapping methods, once the feasible 
set is computed, the map that gives the gamut with the 
largest volume is usually selected as the optimal map, i.e., 
the volume is used as an estimator for the best map. 
Because in our study we only work with the angular error, 
we have used the area of the convex hull of the mapped 
image in chromaticity coordinates as a possible measure 
of optimality. 

In figure 3 we can see some plots of the angular error 
versus the area of the mapped image gamut for three 
different images. The coordinates of each point in this 
plot represent the properties of a specific map of the 
generated feasible set, built with the proposed sampling 
algorithm. 

Observing these plots it can be inferred that the 
optimal solution has a fixed area, i.e., there is only one 
area that gives the best solution, however, for the cases 
we have studied, it rarely is the maximum area. This leads 
us to consider other measures apart from the area. 

In figure 4 we see the scatter plot corresponding to 
the same images of figure 3, presenting in this case the 
angular error versus the volume of images transformed by 
the generated maps. Again, in this case the explored 
images rarely present a maximum volume for the optimal 
solutions. In the same plots, bright dots represent the 
average map computed from these feasible sets, in these  
three cases the average map presents an approximate 
value of 6.  
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Figure 3. Scatter plots of the angular error versus area of the 
mapped images. 

 
 
Another way to characterize a solution map is by 

considering the position of the mapped image within the 
canonical gamut. This position can be given on the 
coordinate system with origin on the center of the 
canonical gamut.  Transforming the center of the gamut 
of the mapped image to its polar coordinates on the 
specified system, we obtain a distance parameter and an 
angle parameter. The behavior of the mapped images 
versus these two parameters is given in figures 5 and 6 
respectively. 

 

 

Figure 4. Scatter plots of the angular error versus volume of 
the mapped images. 

 
 
As in the case of the area, we can not take the 

minimum value of the distance to select the optimal 
solution (what would mean selecting the grey world 
solution), and the problem cannot reduced to a 
maximisation or minimisation problem neither. 

From figures 4, 5 and 6 we have deduced that 
optimal solutions converge on a unique area, a unique 
distance and a unique angle. By crossing the information 
from the values of the optimal maps, we can see in figure 
7, that these optimal maps present a clear intersection 
between maps of optimal angle, maps of optimal distance 
and some maps of optimal area. 
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Figure 5. Scatter plots of the angular error versus position 
distance of the mapped images.  

 
 

Results and Conclusions 

In this paper we have explained some conclusions derived 
from an empirical work on colour constancy solutions. 
Methods based on gamut mapping approaches present a 
decision step that selects the optimal map from the set of 
all feasible maps computed at a former step. Different 
criteria have been proposed for this decision step, 
however, an exploration on how are the solutions within 
this feasible set have not been explored. This is the 
essential contribution of this paper. 
 
 

 

Figure 6. Scatter plots of the angular error versus position 
angle of the mapped images. 

 
 
 
We propose a method to sample the feasible set of 

maps based on some important assumptions on the image 
content. Considering that in an empirical work we can 
synthesise the optimal solution, we can compute the 
angular error between each sample solution and the 
optimal solution. This allows us to plot the relationship 
between the angular error of every sample with respect to 
specific properties of this sample. 
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Figure 7. Scatter plots of the angular error versus area, angle 
and distance. Solutions grouped by optimal area (darkest), by 
optimal angle and by optimal distance (brightest). 

 
 
Explored properties are: the volume of the image 

mapped with a specific solution, the mean map of the 
feasible set, the area of the chromaticity gamut of the 
mapped image and the position of this mapped image 
within the chromaticity gamut of the canonical surfaces. 
For the set of samples we have built, we can state that in 

general, the map with maximum volume, or the map 
which is the mean of the feasible set, or even the map 
with maximum chromaticity area do not present optimal 
errors for the analysed images. 

On the other hand, we have explored other properties 
such as the position of the mapped image on the 
chromaticity plane. Since we have worked on a sampled 
set of maps, we can not build a general solution to the 
colour constancy problem, but we can conclude that some 
other criteria should be defined in order to approximate 
the optimal solutions. 

Further work needs to be done in order to exploit 
these results for the definition of effective selection 
criteria. More properties should be explored and other 
sampling procedures could be defined. 
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