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Abstract 

We have previously presented work using a simple 
computational model of a multispectral imaging system 
which we have used to investigate the effect of various 
parameters (such as the number and properties of the 
colour channels) on the accuracy of spectral estimation. It 
was shown that the parameters of a multispectral imaging 
system interact with each other in a complex way and 
therefore the optimum set of parameters cannot easily be 
determined. This paper concerns the development of an 
optimization technique (based upon simulated annealing) 
to allow the parameter space of the imaging system to be 
searched to find the system parameters that give the 
lowest reconstruction error. Initial results from the 
optimization analysis show that the optimum spectral 
properties of the colour channels depend both upon the 
illuminant under which the image is captured and the goal 
of the spectral reconstruction process.  

Introduction 

It is possible to estimate the spectral reflectance function 
of any surface using a monochrome digital camera with 
only a small number of filters1. Similarly, it is possible to 
use a simple RGB camera system for the recovery of 
surface spectral information. However, in order to obtain 
more reliable estimates of spectral properties it is 
preferable to use more than three filters or colour 
channels. Such a system is generally termed a 
multispectral imaging.2  

We have previously presented work using a simple 
computational model of a multispectral imaging system 
which we have used to investigate the effect of various 
parameters (such as the number of colour channels) on 
the accuracy of spectral estimation3,4. This paper concerns 
the development of an optimization technique to allow 
the parameter space of the imaging system to be searched 
to find the system parameters that give the lowest spectral 
reconstruction error. We have used both spectral and 
colorimetric error measures. The optimization method is 
based upon simulated annealing and allows the full 
parameter space to be searched or allows certain 
parameters to be fixed or constrained. The computational 
model and the optimization procedure combined provide 
a useful tool to assist in the design of optimum 
multispectral imaging systems. 

Previous Work 

In our previous work and in this paper we have used a 
simple model of the interaction between light, surfaces 
and the sensitivities of a camera thus:  
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where Si(λ) is the spectral sensitivity of each channel i 
which is given by the transmittance of each filter coupled 
with the spectral sensitivity of the monochromatic 
camera, E(λ) and R(λ) refer to the illuminant power 
distribution and the surface reflectance function with 
respect to wavelength λ and Oi is the output of the sensor 
array for each channel i. 

We use the output of this model in conjunction with 
a linear model of surface reflectance to estimate the 
spectral reflectance functions of a set of surfaces whose 
spectral properties have already been measured with a 
reflectance spectrophotometer.  

By using a linear model we are assuming that the 
reflectance R(λ) can be approximated by the linear 
combination of a set of known basis functions B(λ), thus 
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and then by substituting Equation 2 into Equation 1, we 
obtain Equation 3 

∫ ∑ 
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which is a set of P equations in N unknowns where P is 
the number of sensor channels and N is the number of 
basis functions used in the linear model. As long as P ≥ 
N, and we assume that E(λ), Bj(λ) and Si(λ) are known, 
we can solve this equation for the coefficients aj using 
standard linear algebra techniques. Now, in order to 
estimate a reflectance function R(λ) it is sufficient to 
determine the coefficients aj, and reconstruct reflectance 
directly using Equation 2. 

Previously published work3 considered the average 
error in spectral reconstruction (measured as the median 
colour difference between measured and reconstructed 
spectra for a set of 1269 Munsell surfaces5) as a function 
of the number of sensors in the imaging device. The 
spectral properties of the sensors were Gaussian functions 
of wavelengths whose peak sensitivities were evenly 
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spaced throughout the visible spectrum. The number of 
basis functions used in the linear model for the 
reconstruction process was always equal to the number of 
sensors (thus, P = N). The results of this experiment are 
summarized by Figure 1 which shows that increasing the 
number of sensors does not guarantee better spectral-
reconstruction performance. 

A subsequent experiment4 relaxed the constraint 
P=N. For each value of P (the number of sensors) the 
number of basis functions was varied and the results 
obtained using the optimum number of basis functions in 
each case are shown in Figure 2.  
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Figure 1. Reconstruction performance as a function of sensor 
number where P = N. 
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Figure 2. Reconstruction performance as a function of sensor 
number where the number of basis functions was optimized in 
each case. 

 
The strikingly poor performance evident for six 

sensor channels in Figure 1 is interesting but we do not 
suggest this effect is robust. For example, changing the 
wavelengths to which the channels are optimally sensitive 
may well result in much improved performance. We 
suggest that the poor performance for six sensors shown 
in Figure 1 occurs because of poor conditioning of 
Equation 3 which, in turn, is caused by correlations 
between the spectral sensitivities of the imaging channels 
and the basis functions in the linear model of reflectance 
spectra. Indeed, when the number and nature of the basis 
functions are allowed to vary then the poor performance 
for six channels disappears (Figure 2).  

Thus over-determining the system may result in 
enhanced performance even though fewer basis functions 
are used in the linear model than might appear 
reasonable. For example, six sensors and six basis 
functions (Figure 1) is out-performed by six sensors and 
five basis functions (Figure 2).  

It is important to note, therefore, that our argument is 
not that having six sensors in any camera system will 
always result in relatively poor performance – since 
relaxing our constraint of equally spaced sensors may 
also have produced different results – but that increasing 
the number of sensors alone does not guarantee better 
performance. The interaction of all of the camera 
properties (in our case, number of channels, width of 
channel sensitivities, etc) needs to be considered. 

The complexity of the interaction of the parameters 
of the imaging system presents a problem if optimum 
values of those parameters are to be sought since a 
multidimensional search procedure is required. The 
current work was motivated as a solution to this problem 
whereby an optimization procedure has been used to 
search the parameter space for a global minimum error 
(maximum performance). 

Experimental 

In our previous work we assessed the performance of a 
camera model whose sensor characteristics were defined 
as simple Gaussian functions of wavelength. This means 
that each channel sensitivity function can be expressed as 
a Gaussian function parameterized by its peak sensitivity, 
half width, amplitude, skewness and kurtosis. Expressing 
the channel sensitivities in this way allows us to run a 
conventional optimization routine known as simulated 
annealing6 to minimize the error in the system output by 
varying the channel parameters. In addition to the 
channel sensitivities we could vary the number of 
channels P, the illuminant E(λ) and the basis functions 
B(λ) used in the linear model. 

In these initial experiments we have only optimized 
the peak sensitivities and the half-widths of the channels 
whose spectral properties were assumed to be Gaussian 
functions of wavelength with zero skewness and kurtosis. 
The number of channels P and the illuminant E(λ) were 
fixed for any given optimization run. The number of basis 
functions was also fixed and was equal to the number of 
channels (N = P).  

The variables for peak sensitivity and half-width 
were represented by discrete values at 10nm intervals; the 
peak sensitivity of each channel was allowed to take on 
any wavelength from the set [400nm, 410nm, 420nm, … 
690nm, 700nm] and the half-width was allowed to take 
on any value from the set [10nm, 20nm, 30nm, …, 
300nm, 310nm]. All filters were normalised so that the 
integrated sensitivity was always constant. 

The simulated annealing optimization procedure 
aims to minimize a cost function. In our case we used one 
of two cost functions: the RMS error and the mean 
CIELAB ∆E error under D65 between the actual 
reflectance spectra and the reconstructed reflectance 
spectra. The set of 1269 Munsell reflectance spectra were 
used both for the determination of the basis functions in 
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the linear model and for the computation of the cost 
function.  

Experiment 1: Effect of Cost Function 
In this experiment the effect of using RMS or ∆E as 

the cost function was evaluated using an imager with 3 
and 4 sensors. The imaging illuminant was D65 and the 
half-widths and peak sensitivities of the sensor classes 
were optimized by the simulated annealing algorithm  

Experiment 2: Effect of Imaging Illuminant 
In this experiment the effect of using D65 or A as the 

imaging illuminant was evaluated using an imager with 3 
and 4 sensors. The RMS cost function was used and the 
half-widths and peak sensitivities of the sensor classes 
were optimized by the simulated annealing algorithm  

Results 

Experiment 1: Effect of Cost Function 
Figures 3 and 4 show the results obtained using the 

RMS and ∆E cost functions respectively for three 
sensors. 

In Figure 3 the spectral half-widths of the three 
sensors are similar and the peak sensitivities are spread 
evenly throughout the spectrum. However, this is not the 
case with the spectral sensitivities in Figure 4, whose 
similarity with the human cone fundamentals is striking.  

Equivalent results are illustrated for the case of four 
sensors in Figure 5 and Figure 6. 
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Figure 3. Optimized spectral sensitivities of three sensors using 
the RMS cost function (imaged under illuminant D65). 
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Figure 4. Optimized spectral sensitivities of three sensors using 
the ∆E cost function (imaged under illuminant D65). 
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Figure 5. Optimized spectral sensitivities of four sensors using 
the RMS  cost function (imaged under illuminant D65). 
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Figure 6. Optimized spectral sensitivities of four sensors using 
the ∆E cost function (imaged under illuminant D65). 

Experiment 2: Effect of Imaging Illuminant 
Figure 7 shows the optimized spectral sensitivities of 

an imager with three sensors where the imaging 
illuminant was illuminant A. The cost function was the 
RMS error and therefore Figure 7 (illuminant A) can be 
compared with Figure 3 (illuminant D65). 

Figure 7 illustrates that the optimum spectral 
sensitivities of a multispectral imaging system are 
dependent upon the spectral properties of the illuminant. 
The product of the illuminant and the channel 
sensitivities can be combined to give the effective 
spectral sensitivity of the imaging system under that 
illuminant. Figure 8 shows the spectral sensitivities of 
Figure 7 multiplied by the spectral power distribution of 
the imaging illuminant A. It can be observed that the peak 
sensitivity of the sensor class at 400nm (Figure 7) is 
effectively shifted to a longer wavelength when the 
illuminant is considered (Figure 8). This arises because 
the large band-widths of the sensors in Figure 7 interact 
with the spectral properties of the illuminant to give the 
effective spectral sensitivities that are shown in Figure 8.  
Of course, we note that intrinsically it is the effective 
spectral sensitivities of the imaging system (not the 
spectral sensitivities of the channels alone) that are 
optimally determined. 
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Figure 7. Optimized spectral sensitivities of three sensors using 
the RMS cost function (imaged under illuminant A). 
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Figure 8. Effective spectral sensitivities of the optimal sensors 
shown in Figure 7 under illuminant A. 

Discussion 

Other authors have attempted to optimize aspects of 
multispectral imaging systems. Particular attention has 
been paid to the optimization of filter characteristics7,8,9 in 
the design of multispectral systems. These are generally 
based upon vector space methods such as projection onto 
convex sets.  

In this work we have shown that the nature of the 
cost function that is used in the optimization procedure 
affects the spectral properties of the filters that are found. 
In particular, we have found differences between a simple 
RMS measure and a colorimetric error based upon 
CIELAB ∆E under illuminant D65. The RMS error is 
attractive in that it is illuminant independent. However, it 
does not take into account any properties of the human 
visual system and may not yield the most practically 
effective imaging parameters. The colour-difference 
approach does take into account the human visual system 
but in our work is restricted to a single illuminant (D65). 
The use of a colour-difference metric also allows for 
metamers and therefore the choice of a suitable metric 
depends upon the goals of the reconstruction procedure; 
i.e. is it to recover accurate spectral properties or is it to 
recover estimates of spectral properties that colori-
metrically match the original spectra? Recent work on the 
choice of a suitable metric for optimizing the filters of a 
multispectral imaging system has considered Vora and 
Trussell’s µ-factor10 and a unified-measure-of-goodness 
colorimetric measure.11 

We have also shown that the properties of the 
optimal colour channels depend upon the illuminant 
under which the imaging system operates. Current work 
is underway to extend our analysis to include the 
illuminant in the optimization procedure and to ensure 
that realistic noise characteristics are included in the 
system.  
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