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Abstract

The colour gamuts of colour reproduction media are
important properties of them and can play a decisive role
in their use in colour reproduction applications as well as
the improvement of their capabilities. While this topic has
frequently been studied and is well understood and for
output colour imaging media, a solution for input media
is not to be had in a simple way. To this end, the present
paper proposes a method for obtaining the theoretical
gamut across which a device can capture colour differences
and this method is based on simulating the responses of an
input medium to given spectral power distributions. The
gamut of an input medium is then determined on the basis
of having a set of spectra that cover the majority of all
possible spectra, knowing a medium’s responses to them
and then determining a boundary beyond which the
medium does not produce variation in its responses. The
present paper is an abridged version of a more extensive
treatment of the topic submitted for journal publication.1
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Fig. 1. Types of digital colour imaging media.

A digital colour imaging medium provides a link
between digital data and colour stimuli and can be of two
principal types depending on whether colour stimuli are its
inputs or outputs. Output colour imaging media (e.g.
monitors, printers, projectors) produce colour stimuli from
digital data sent to them whereas input media (e.g. digital
cameras, scanners) produce digital data by sensing colour
stimuli (Fig. 1.).

Hence, what a colour imaging medium’s gamut is
depends on which of these classes it belongs to.2 For
output media the gamut is the range of colour stimuli they
can produce and for input media it is the range of colour
stimuli across which they can sense differences. In both
cases, determining the gamut of a medium requires having

access to the entire range of inputs to the medium – for
output media this means access to the entire range of
digital data that can be input to them and for input media
one needs access to the entire range of colour stimuli that
can be presented to them for capture. Once one has access
to the entire range of inputs, the gamut is then determined
on the basis of a medium’s corresponding outputs. Note
also that it is only meaningful to determine a medium’s
gamut in the space of colour stimuli as in the space of
digital data it is always a cube (or hypercube) or some
trivial subset of it (e.g. in printers due to setting a
maximum total ink amount).

Hence calculating the colour gamut of an output
medium consists of sending every possible digital input
(or a sample thereof) to it, measuring the colour of each
corresponding output and then calculating a boundary
enclosing these colours in a colour space. The generation
of inputs to these media is a trivial matter as one has
access to their entirety. Furthermore if the relationship
between the medium’s inputs and the colours of resulting
stimuli (e.g. between RGB and CIELAB for a CRT) is
monotonic it is sufficient to sample the extremes of the
range of digital inputs (e.g. the faces of the RGB cube for
a CRT) as these will correspond to the extremes of the
resulting stimuli’s colours – the gamut boundary. The
boundary enclosing the medium’s extremes can then be
described using a range of methods and data structures.3–5

The reason why complexity arises for the gamuts of
input media is that sampling the entire range of possible
inputs to them means sampling the entire range of
possible colour stimuli. This is the case because, to
determine the range across which differences in stimuli can
be sensed, a set of stimuli with a gamut greater than or
equal to the gamut of the given input medium needs to be
available. Practically this also means that the gamuts of
input imaging media can only be determined theoretically
as having such a set of actual surfaces is extremely
difficult to achieve.

Once a set of computationally generated samples from
the entire possible gamut of stimuli is available, it is
necessary to know the medium’s responses to each of
them and then based on this data to determine the
medium’s gamut boundaries. The approach suggested in
this paper is based on simulation whereby samples will be
generated numerically in terms of their spectra and a
medium’s responses to them will be simulated
computationally as well. Hence, the present paper will
consist of three principal parts: generation of a set of
stimuli for determining the gamut boundaries of input
media, modelling of the responses of input media and
calculation of gamut boundaries of input media.
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Sampling the set of all possible stimuli

The set of all possible physical stimuli resulting in
visual responses is virtually unbounded* and a sampling of
its entirety is therefore virtually impossible. However, the
set of all possible surface characteristics resulting in visual
responses is bounded as it is determined by spectral
reflection or transmission properties which are bounded
themselves. While this set (referred to as the object colour
solid – OCS) does not represent all possible stimuli, it
does represent all possible stimuli resulting from a
particular light source’s output being reflected from or
transmitted by all possible surfaces. The suitability of
such a set for calculating gamuts of input media is further
supported by these having finite range and hence there is
such a theoretical stimulus spectral power distribution
(SPD) beyond which increases in energy will not result in
increases in sensed data – this SPD can be referred to as
the maximal stimulus (Smax). The necessary existence of
Smax (given limited range) also means that all other
stimuli can be normalised by it to give relative spectra
with the same characteristics as reflectance or transmission
spectra (i.e. having values across the spectrum only from
the interval [0,1]†). Given this constraint, the set of all
possible stimuli for an input medium is the OCS. An
alternative interpretation of the use of the OCS for
determining an input medium’s gamut is that it only
represents the intersection of the medium’s gamut and the
gamut of all possible surfaces under a given illuminant.

The next point to consider is how best to sample the
OCS. The simplest option is to generate spectral
reflectances by varying reflectance values independently at
a number of intervals across the visible spectrum.
However, such a sampling results in samples being
unevenly distributed in terms of colour appearance and to
achieve a sufficiently dense sampling throughout colour
space would require the calculation of an extreme amount
of spectra. Using 31 intervals between 400 and 700 nm
would result in 231 samples if only the 0% and 100%
levels are considered. Such a sampling, however, does not
provide a sufficiently dense sampling in visual terms.
Wanting to increase the number of reflectance levels
sampled even to three would increase the number of
samples to 331 which is unacceptably high in terms of
computation and still insufficient for sampling colour
appearance space sufficiently.

A much more efficient approach is to sample in terms
of a colour appearance space and then calculate spectra for
each of the sampled colour space coordinates. To do this,
the gamut boundary of the OCS is first needed in colour
appearance space terms. In the present study CIELAB6 was
chosen as the colour appearance space a D53 light source
was used and gamuts were determined by calculating
16×16 element gamut boundary descriptors (GBDs) using
the segment maxima method.5 To calculate the gamut
boundary of the OCS, a three stage process was carried
out:

                                                
* It is bounded only if the amount of energy possible in

this universe is bounded.
† This includes fluorescent samples as the Smax SPD

would also take into account this phenomenon.

1) Calculate the GBD for the 231 reflectance spectra
obtained by all combinations of the 0% and 100%
levels for 31 intervals of the visible spectrum between
400 and 700 nm. This is a first approximation of the
OCS’s gamut and will be referred to as GBD’.

2) Generate further stimuli from the OCS by taking the
colours in GBD’ and scaling their tristimulus values to
a number of levels p between 0% and 100%. The
resulting XYZ values are all from the OCS as they
correspond to the XYZ values of scaled versions of the
spectra from GBD’ and as any spectrum from GBD’
scaled by p is in the OCS. Scaled versions of the
spectra in GBD’ can be had by scaling their XYZs as
X k S R x= ∑ ( ) ( ) ( )λ λ λ  (where S(λ) is the SPD of a
light source, R(λ) the reflectance spectrum of a
surface, x(λ) is a colour matching function and each of
these is an n×1 matrix) and therefore pX can be
obtained either by pX pk S R x= ∑ ( ) ( ) ( )λ λ λ  or
pX k S pR x= ∑ ( ) ( ) ( )λ λ λ  due to the distributive

nature of scalar multiplication. The same applies to Y
and Z if p is the same for each of X, Y and Z.

3) The OCS’s GBD is then calculated from the set of
colours obtained in step 2.
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Fig. 2. Sampling gamut of colour stimuli
(samples are only indicated for one sampling line).

Once the gamut boundary of the OCS is known, it
can be sampled in terms of CIELAB. This sampling can,
among others, be done uniformly throughout the gamut
or, as will be the case here, along lines between the centre
of the gamut LAB=[50,0,0] and each of the 16x16 GBD
colours. Why this latter strategy is used here will become
clear form section 4. Note also that ten samples are taken
along each such line (Fig. 2). Spectra are then generated
for each of these LAB coordinates.

The method for recovering spectral reflectances
corresponding to given LAB values used here is based on
the concept of metamer set recovery.7 First, LAB values
are transformed into CIE XYZ tristimulus values, as the
relationship between these and corresponding spectra is
linear. Using this linearity it is possible to recover surface
reflectance for any illuminant.

Many statistical studies8,9 have shown that in nature
spectral reflectances cover as little as 3 to 6 dimensions
only, reducing the dimensionality of the colour formation
problem significantly. A set of basis functions covering
the most important axes of variation can be derived using
characteristic vector analysis and given such a basis,
reflectance is represented as a weighted average of these (a
set of weights being a unique descriptor of a reflectance).

For 3 basis functions the relationship between
tristimulus values and the basis weights is a linear one-to-
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one mapping – allowing for no metamerism (the
phenomenon whereby spectrally different reflectances
result in identical response). The recovery of the weights
in this case is a simple matrix inverse. Three dimensions
cover a lot of the OCS, however they are not sufficient for
high frequency components present in saturated colours.
The farther a colour is from the achromatic point (i.e. the
closer it is to the OCS boundary), the higher the
frequencies present in the spectrum.

To account for these high frequency components as
well as to take metamerism into account, more basis
functions are used – colour formation is no longer a one-
to-one mapping and becomes an underdetermined system
of linear equations with a possibly infinite set of
solutions. The solution to such a system can be split up
into a particular solution (from the range space of the
spectral sensitivities times the illuminant) and a “black”
solution (orthogonal to the range space of the spectral
sensitivities times the illuminant). The former accounts
for the tristimulus response and the later does not affect it
and can hence be arbitrarily scaled. This results in a
convex linear set, which is unbounded and represents all
solutions (within the given basis).

The surface reflectances of matte, Lambertian surfaces
illuminated with a diffuse light source are at any
wavelength less than or equal to 100% (no more than all
light is reflected) and more than or equal to 0%(no less
than no light is reflected). These notions can be formulated
as linear constraints, constituting a bounded convex set
of all metamers. Given this infinite metamer set, it is
possible to choose one as a representative for the set.

Of the basis dimensions tried here (ranging from 3 to
8), the 8 dimensional basis gives the best results (Fig. 3)
and will therefore be used throughout the remainder of this
study. Note that as the gamut of the 8D basis does not
cover the entire OCS gamut, what this method will yield
is the intersection of an input medium’s gamut and that of
the 8D basis. While this is not an ideal solution it is
significantly better than what could be done, for example,
if an IT8.7/2 chart10 was used due to the 8D gamut being
much larger than the gamut of the chart. This difference in
gamut between that of the 8D basis and the IT8.7/2 chart
can be explained by the fact that 99.8% of the variation of
the chart’s spectra is covered by a 3D basis. Furthermore,
the set of spectra obtained using the 8D basis could be
supplemented by spectra from the surface of the OCS as
these are available when the OCS gamut boundary is
generated. This, however, will not be done here as it
would for some sampling lines result in a large difference
between the last spectrum generated using the 8D basis
and the spectrum on the OCS boundary.

Even though a large proportion of the variation in
natural surface spectra can be covered by three bases, it is
meaningful to go to higher dimensions when determining
input medium gamuts. Firstly, it can be seen from Figure
3 that the gamut of the 3D spectra does not even cover the
gamut of the IT8 chart and secondly there is prior
experimental evidence for

For example, Vrhel et al.8 studied 64 Munsell chips,
120 DuPont paint chips and a set of 170 reflectances of
objects of varying origin (including natural and man-made
samples). The approximation by a linear model of surface
reflectance in the basis of principal components of the

studied surfaces was then evaluated in terms of ∆Eab for an
equi-energy illuminant. Importantly this study shows that
large errors occur in particular for reflectances of saturated
samples when using a linear model with a small number
of dimensions. The analysis concludes that less than seven
dimensions should suffice (although a maximum error of 5
∆E occurs even in this seven dimensional representation).
As it is the saturated colours that are of great importance
in determining colour gamuts, it is meaningful to recover
spectra using higher–dimensional bases.
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Fig. 3. Gamuts of IT8.7/3 chart, the OCS and samples
obtainable using spectral bases of various dimensions.

The advantages of sampling in a colour appearance
space are that from the point of view of colour appearance
it is more efficient than pure spectral sampling as well as
making the calculation of input medium gamuts easier, as
will be shown in section 4.

Modelling the responses of input media

What digital data an input medium outputs as a result
of sensing a given spectrum depends on its sensor
sensitivities, dynamic response, repeatability and on the
bit–depth of the digital data it outputs. Note that in the
following discussion intermediate predictions of RGB
values will be subscripted with the number of steps they
are removed from the final prediction (i.e. R3 is removed
three steps from the final R, R2 by two steps, etc.).

In such a model, the sensor sensitivities for a three
channel input medium are represented by an n×3 matrix M
(where n is the number of samples taken across the
spectrum) where each column represents the sensitivities
of one sensor (i.e. red, green and blue). The first
approximation of the medium’s response is then obtained
by:

[R3 G3 B3] = k(R.S)TM (1)

where (R.S) is the dot-product resulting in a nx1
column vector and ()T is the transpose operator Note that
all these values are normalised by the scalar k=1/max(R3W,

G3W, B3W) where R3W, G3W and B3W are the non–normalised
responses predicted for the perfect diffuser illuminated by
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the chosen illuminant. Hence all [R3 G3 B3] values are
from a range of [0,1].

The R3G3B3 responses to a given spectrum predicted
by using only the spectral sensitivities of the camera
assume that its response is linear and that this response
varies across the entire range of input intensities. This,
however, is not the case for actual media as these both
have non–linearities and clipping (i.e. above and below
certain input intensities, the camera’s responses no longer
vary) and their dynamic response therefore needs to be
modelled.11 These dynamic response functions (DRFs) of
the medium are then represented by m×2 matrices DR, DG

and DB for each channel where m is the number of
lightness levels at which the medium response’s difference
from what is predicted only using the sensor sensitivities
is determined. For a given [R3 G3 B3] the second
approximation of the response [R2 G2 B2] is then obtained
by interpolating its values from the DX matrices (where X
∈ {R, G, B}) in which the first column contains the
R3G3B3 values predicted for a series of nearly non–selective
spectra (i.e. their reflectance values change little with
wavelength) and the second column contains their RGB
values as captured with the medium to be modelled.

Next, the effects of quantisation are modelled as
follows:

R1 = round(R2l) (2)

Where round() is a function returning the nearest
integer to a given real number and l is the maximum value
available at a given bit depth b given by 2b-1 (e.g. 255 for
8 bits and 65535 for 16 bits). This makes the RGB values
change from having a range of [0,1] to having ranges that
depend on bit–depth (e.g. [0,255] for 8 bits per channel).

Finally a model of an input colour imaging medium
also needs to acknowledge the fact that the behaviour of
imaging media fluctuates and that there therefore is some
repeatability error. Note that this error will not be
modelled here but its extent will be determined empirically
and then used in gamut calculation.
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Fig. 4. Spectral sensitivities of Agfa Studiocam.

To illustrate the above input medium modelling and
the subsequent gamut calculation, an Agfa Studiocam was
modelled in this study. Its spectral sensitivities were
recovered using the quadratic programming technique
proposed by Finlayson et al.12 and are shown in Fig. 4.
Using this method a number of samples (i.e. the Macbeth

ColorChecker chart, 12 CERAM ceramic calibration tiles
and a selection of NCS paper samples) with known spectra
were captured with the camera and a constrained regression
technique was then used to recover the camera’s spectral
sensitivities. These constraints used here included
positivity (as media cannot have negative sensitivity),
modality (as sensor sensitivity curves have only a small
number of peaks) and band–limitedness (as sensor
sensitivities are smooth).

The Studiocam’s DRFs were determined for three
f–stop settings (2.8, 5.6 and 11) of its lens and
corresponding exposure times automatically determined by
the driver software and are shown in Fig. 5.
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Fig. 5. Studiocam DRFs at different f–stops.

The repeatability error of the camera was 1.5% of the
range in each channel and the camera was capable of
quantising at 8 or 16 bits per channel.

Calculating colour gamuts
of input media

The following procedure for calculating the colour
gamut of an input imaging medium is directly based on
the premise that the gamut of an input medium is that part
of colour space across which it can sense differences and
consists of the following steps:
1) For each of the sampling lines extending from the

centre of the lightness axis towards the points of the
GBD generate x CIELAB samples. (The larger x is, the
more finely the gamut of a medium can be
determined.)

2) For each LAB value from step 1 calculate the spectrum
that corresponds to it given a certain illuminant and
basis.

3) For each spectrum from step 2 calculate the responses
of the camera (e.g. using the model described in
section 3).

4) For each sampling line find that sample for which the
camera response is not significantly different from the
response for the following sample along that line,
starting from the centre of colour space. Responses to
two samples are significantly different if they differ by
an amount greater than the repeatability of the camera
in at least one of the channels at the given quantisation
bit–depth.

5) The samples found in step 4 represent the gamut
boundary and can be described using a GBD.
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Fig. 6. Example of gamut calculation along given sampling line (f–stop = 2.8; 8 bit).

sample 1 2 3 4 5 6 7 8 9

R 0.66 0.69 0.71 0.73 0.74 0.75 0.87 0.83 0.82

G 0.69 0.84 0.98 1.00 1.00 1.00 1.00 1.00 1.00

B 0.58 0.72 0.86 0.96 1.00 1.00 1.00 1.00 1.00

Tab. 1. Camera responses to spectra shown in Fig. 6.

However, while the outcome of the above procedure is
a representation of the medium’s gamut boundary, it is
in fact a representation that is biased. Namely, the
above method can result in a gamut boundary that is
smaller that the medium’s actual boundary for two
reasons.
Firstly, as a finite number of samples is considered
along each line, the actual gamut boundary is strictly
speaking in the interval determined by the sample
chosen by the above method and by the next sample
along each sampling line. Secondly, as a whole
metamer set corresponds to each of the CIELAB values
of the samples and as only one of the reflectances from
the set is was used in the computations for this paper,
it is possible that using other reflectances that result in
a given CIELAB value (i.e. that are from its metamer
set) would result in a larger colour gamut being
calculated.
While the first of these limitations is not one that a
solution is suggested to here (beyond that of increasing
the number of samples per sampling line), the second
limitation can be overcome by using not only one
reflectance for each CIELAB sample but by using a
number of reflectances delimiting the metamer set.

To illustrate the method described above, Fig. 6
shows the LAB values and spectra along a particular
sampling line and Table 1 shows the corresponding
RGB responses normalised to a [0,1] range. As can be
seen, the gamut boundary is between samples 5 and 6
and the fifth sample is therefore chosen to represent the
boundary.

Results

The method described in section 4 has been applied
to calculating the gamuts of the Agfa Studiocam for its

various states and the results of this work are presented in
this section. Note that in the Figure 7 the following
convention is used for labelling individual series: “Sensor,
DRFf–stop, T%, bit depth” where Sensor refers to the sensor
sensitivities, DRFf–stop is the DRF for the given f–stop
setting, T% is the repeatability error in terms of percentage
(%) of range and bit depth is quantisation bit depth.

Fig. 7 shows the Studiocam’s gamuts for the 8–bit and
1.5% repeatability case and three different f–stop settings.
What can be seen here is that the choice of f–stop greatly
influences the camera’s colour gamut both in lightness and
chroma terms.
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Fig. 7. Actual camera gamuts for different f–stops.

Conclusions

Overall this paper has aimed at describing methods for
generating samples suitable for the calculation of the
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theoretical gamuts of input media, followed by the
description of a camera model and of a novel techniques
for calculating input medium gamuts. In addition to
being a first attempt at calculating input gamuts, the
present technique also has the benefit of being of use at
the stage of camera or scanner development as it could
be used for tuning an input medium’s parameters so as
to optimise its colour gamut.
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