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Abstract

In this paper we propose a novel approach to the problem of
noise reduction in color images. The new technique of mul-
tichannel image enhancement is capable of reducing im-
pulse and Gaussian noise and it outperforms the standard
methods of noise reduction in color images. In the paper
a new smoothing operator, based on a random walk model
and a fuzzy similarity measure between the image pixels
connected by a digital geodesic path contained in the fil-
ter window is introduced. The efficiency of the proposed
method was tested on the standard color images using the
widely used objective image quality measures.

Standard noise reduction filters

Most popular nonlinear, multichannel filters are based on
the ordering of vectors in a predefined moving window [1-
6]. The output of these filters is defined as the lowest ranked
vector according to a specific vector ordering technique.

Let F(x): represent a multichannel image and let W
be a window of finite size n (filter length). The noisy im-
age vectors inside the filtering window W are denoted as
Fj , j = 0, 1, ..., n − 1 . If the distance between two vec-
tors Fi,Fj is denoted as ρ(Fi,Fj) then the scalar quan-
tity Ri =

∑n−1
j=0 ρ(Fi,Fj), is the distance associated with

the noisy vector Fi . The ordering of the Ri ’s: R(1) ≤
∗This work was partially supported by KBN grant 7 T11A 010 21

. . . ≤ R(n−1), implies the same ordering to the correspond-
ing vectors Fi : F(1) ≤ . . . ≤ F(n−1). Nonlinear ranked
type multichannel estimators define the vector F(0) as the
filter output. However, the concept of input ordering, ini-
tially applied to scalar quantities is not easily extended to
multichannel data, since there is no universal way to define
ordering in vector spaces.

To overcome this problem, distance functions are often
utilized to order vectors. As an example, the Vector Median
Filter (VMF) uses the L1 norm to order vectors accord-
ing to their relative magnitude differences. The orientation
difference between two vectors can also be used to remove
vectors with atypical directions (Vector Directional Filter -
VDF, Basic Vector Directional Filters- BVDF).

The reduction of image noise without major degradation
of the image structure is one of the most important prob-
lems of the low-level image processing. A whole variety
of algorithms has been developed, but none of them can be
seen as a final solution of the noise problem and therefore a
new filtering technique, which copes better with impulsive
and Gaussian noise has been proposed in this paper.

New Algorithm of Noise Reduction

Let us assume, that R2 is the Euclidean space, W is a planar
subset of R2 and x, y are points of of the set W .

A path from x to y is a continuous mapping P: [a, b] →
X , such that P(a) = x and P(b) = y. Point x is the starting
point and y is the end point of the path P [8-10].

CGIV'2002: First European Conference on Colour Graphics, Imaging, and Vision

520

CGIV 2002: The First European Conference on Colour Graphics, Imaging, and Vision

517



An increasing polygonal line P on the path P is any
polygonal line P = {g(λi)}n

i=0 , a = λ0 < . . . < λn = b.
The length of the polygonal line P is the total sum of its
constitutive line segments L(P ) =

∑n
i=1 ρ(P(λi−1, λi) ,

where ρ(x, y) is the distance between the points x and y,
when a specific metric is adopted.

If P is a path from x to y then it is called rectifiable, if
and only if L(P ), where P is an increasing polygonal line
is bounded. Its upper bound is called the length of the path
P . The geodesic distance ρW (x, y) between points x and y
is the lower bound of the length of all paths leading from x
to y totally included in W . If such paths do not exist, then
the value of the geodesic distance is set to ∞. The geodesic
distance verifies ρW (x, y) ≥ ρ(x, y) and in the case when
W is a convex set then ρW (x, y) = ρ(x, y).

The notion of the geodesic distance can be extended to a
lattice, which is a set of discrete points, in our case image
pixels.

Let a digital lattice H = (F,N ) be defined by F, which
is the set of all points of the plane (pixels of a color im-
age) and the neighbourhood relation N between the lattice
points.

A digital path P = {pi}n
i=0 on the lattice H is a sequence

of neighbouring points (pi−1, pi) ∈ N . The length L(P )
of digital path P {pi}n

i=0 is simply
∑n

i=1 ρH(pi−1, pi). If
P (x, y) denotes the digital path connecting the points x and
y in F then the lattice distance between those points is de-
fined as ρH(x, y) = min

P (x,y)
L[P (x, y)].

Constraining the paths to be totally included in a pre-
defined set W ∈ F yields the digital geodesic distance
ρW . In this paper we will assign to the distance of neigh-
bouring points the value 1 and will be working with the 8-
neighbourhood system.

Let the pixels (i, j) and (k, l) be called connected ,
denoted as (i, j) ↔ (k, l) , if there exists a geodesic
path PW {(i, j), (k, l)} contained in the set W start-
ing from (i, j) and ending at (k, l). If two pixels
(x0, y0) and (xn, yn) are connected by a geodesic path
PW {(x0, y0), (x1, y1), . . . , (xn, yn)} of length n then let
χ

χW,n{(x0, y0),(xn, yn)}=
n−1∑
k=0

||F(xk+1, yk+1)−F(xk, yk)||
(1)

be a measure of dissimilarity between pixels (x0, y0)
and (xn, yn), along a specific geodesic path PW joining
(x0, y0) and (xn, yn). If a path joining two distinct points
x, y, such that F(x) = F(y) consists of lattice points of the
same values, then χW,n(x, y) = 0 otherwise χW,n(x, y) >
0.

Let us now define a function which measures the similar-
ity between two pixels connected along all geodesic digital

paths leading from (i, j) and (k, l)

µW,n{(i, j),(k, l)}=
ω∑

l=1

exp
[
−β · χW,n

l {(i, j), (k, l)}
]

(2)
where ω is the number of all geodesic paths connecting
(i, j) and (k, l), β is a parameter and χW,n

l {(i, j), (k, l)}
is a dissimilarity value along a specific path from a set of all
ω possible paths leading from (i, j) to (k, l).

For n = 1 and W a square mask of the size 3 × 3, we
have µW,1{(i, j), (k, l)} = exp {−β||F(i, j) − F(k, l)||}}
and when F(i, j) = F(k, l) then χW,n{(i, j), (k, l)} = 0,
µ{(i, j), (k, l)} = 1, and for ||F(i, j)−F(k, l)|| → ∞ then
µ → 0.

The normalized similarity function takes the form

ψW,n{(i, j), (k, l)} =
µW,n{(i, j), (k, l)}∑

(l,m)⇔(i,j)

µW,n{(i, j), (l, m)}
(3)

The normalized similarity function has the property
∑

(k,l)⇔(i,j)

ψW,n{(i, j), (k, l)} = 1 (4)

Now we are in a position to define a smoothing transforma-
tion J

J(i, j) =
∑

(k,l)⇔(i,j)

ψW,n{(i, j), (k, l)} · F(k, l) (5)

where (k, l) are points which are connected with (i, j) by
geodesic digital paths of length n included in W .

Results

The effectiveness of the new smoothing operator was tested
using the LENA and PEPPERS standard images contam-
inated by Gaussian noise of σ = 30. We also used the
LENA image contaminated by 4% impulsive noise (salt &
pepper added on each channel) mixed with Gaussian noise
(σ = 30). The performance of the presented method was
evaluated by means of the objective image quality measures
RMSE, PSNR, NMSE and NCD [3].

Tables 2 and 3 show the obtained results for n = 2,
W = 3× 3 and β increasing linearly from 10 to 30. For the
calculation of the similarity function we used the L1 met-
ric and an exponential function, however we have obtained
good results using other convex functions and different vec-
tor metrics. The efficiency of the new algorithm is depicted
in Fig. 2 and 3.

Conclusions

In this paper, a new robust filter for noise reduction in color
images has been presented. Experimental results indicate
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Notation Filter
AMF Arithmetic Mean Filter
VMF Vector Median Filter
BVDF Basic Vector Directional Filter
GVDF Generalized Vector Directional Filter
DDF Directional-Distance Filter
HDF Hybrid Directional Filter

AHDF Adaptive Hybrid Directional Filter
FVDF Fuzzy Vector Directional Filter
ANNF Adaptive Nearest Neighbor Filter

ANP-EF Adaptive Non Parametric (Exponential) Filter
ANP-GF Adaptive Non Parametric (Gaussian) Filter
ANP-DF Adaptive Non Parametric (Directional) Filter

VBAMMF Vector Bayesian Adaptive Median/Mean Filter

Table 1. Filters taken for comparison with the
proposed filter [1-5].

that the new filtering technique outperforms the standard
procedures used to reduce mixed impulsive and Gaussian
noise in color images. The efficiency of the new filtering
technique is shown in Tables 2 and 3 and Figures 2 and 3.

References

[1] A.N. Venetsanopoulos, K.N. Plataniotis, ‘Multichannel image pro-
cessing’, Proceedings of the IEEE Workshop on Nonlinear Sig-
nal/Image Processing, vol. I, pp. 2-6, 1995.

[2] I. Pitas, A. N. Venetsanopoulos, Nonlinear Digital Filters : Princi-
ples and Applications, Kluwer Academic Publishers, Boston, MA,
(1990)

[3] K.N. Plataniotis, A.N. Venetsanopoulos, Color Image Processing
and Applications, Springer Verlag, Berlin, ISBN 3-540-66953-1,
August 2000.

[4] I. Pitas, P. Tsakalides, ‘Multivariate ordering in color image pro-
cessing’, IEEE Trans. on Circuits and Systems for Video Technol-
ogy, Vol.1, No. 3, pp. 247-256, 1991.

[5] I. Pitas, A.N. Venetsanopoulos, ‘Order statistics in digital image
processing’, The Proceedings of IEEE, vol. 80, no. 12, pp. 1893-
1923, 1992.

[6] J. Astola, P. Haavisto, Y. Neuovo, ‘Vector median filters’, The Pro-
ceedings of IEEE, vol. 78, pp. 678-689, 1990.

[7] B. Smolka, K. Wojciechowski, ‘Random walk approach to image
enhancement’, Signal Processing, vol. 81, no. 3, pp. 465-482, 2001.

[8] G. Borgefors, ‘Distances transformations in digital images’. Com-
puter Vision, Graphics and Image Processing, vol. 34, pp. 334-371,
1986.

[9] G. Matheron, Random Sets and Integral Geometry, John Willey,
New York, 1975.

[10] Henk J.A.M. Heijmans., Mathematical Morphology: Basic Princi-
ples, Proceedings of the Summer School on Morphological Image
and Signal Processing, Zakopane, Poland, 1995.

Figure 1. Test images (Lena and Peppers) with
depicted region of interests.
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METHODN NMSE RMSE SNR PSNR NCD
[10−3] [dB] [dB] [10−4]

NONE 420.550 29.075 13.762 18.860 250.090

AMF1 66.452 11.558 21.775 26.873 95.347
AMF3 69.307 11.803 21.592 26.691 76.286
AMF5 91.911 13.592 20.366 25.465 75.566

VMF1 136.560 16.568 18.647 23.745 153.330
VMF3 93.440 13.705 20.295 25.393 123.500
VMF5 87.314 13.248 20.589 25.688 117.170

BVDF1 289.620 24.128 15.382 20.480 143.470
BVDF3 279.540 23.705 15.536 20.634 117.400
BVDF5 281.120 23.772 15.511 20.610 114.290

GVDF1 112.450 15.035 19.490 24.589 119.890
GVDF3 76.988 12.440 21.136 26.234 89.846
GVDF5 76.713 12.418 21.151 26.250 84.876

DDF1 150.830 17.412 18.215 23.314 143.530
DDF3 106.900 14.659 19.710 24.809 114.770
DDF5 100.500 14.213 19.979 25.077 108.960

HDF1 119.100 15.473 19.241 24.339 131.190
HDF3 72.515 12.073 21.396 26.494 99.236
HDF5 66.584 11.569 21.766 26.865 92.769

AHDF1 105.480 14.561 19.768 24.867 129.710
AHDF3 64.519 11.388 21.903 27.002 97.873
AHDF5 60.166 10.997 22.206 27.305 91.369

FVDF1 78.927 12.596 21.028 26.126 101.950
FVDF3 57.466 10.748 22.406 27.504 77.111
FVDF5 62.269 11.188 22.057 27.156 74.235

ANNF1 86.497 13.186 20.630 25.729 107.130
ANNF3 63.341 11.284 21.983 27.082 82.587
ANNF5 66.054 11.523 21.801 26.900 78.677

ANP-E1 66.082 11.525 21.799 26.898 95.237
ANP-E3 60.396 11.018 22.190 27.288 76.896
ANP-E5 73.416 12.148 21.342 26.441 75.456

ANP-G1 66.095 11.526 21.798 26.897 95.244
ANP-G3 60.443 11.023 22.187 27.285 76.890
ANP-G5 73.497 12.155 21.337 26.436 75.458

ANP-D1 81.306 12.784 20.899 25.997 104.980
ANP-D3 58.389 10.834 22.337 27.435 78.486
ANP-D5 63.136 11.265 21.997 27.096 75.442

VBAMMF1 66.452 11.558 21.775 26.873 95.347
VBAMMF3 69.307 11.803 21.592 26.691 76.286
VBAMMF5 91.911 13.592 20.366 25.465 75.566

NEW1 84,314 13,018 20,741 25,840 108,340
NEW3 46,221 9,639 23,352 28,450 73,777
NEW5 47,039 9,724 23,275 28,374 70,189

Table 2. Comparison of the new algorithm
with the standard techniques (Tab. 1) using
the LENA standard image corrupted by Gaus-
sian noise σ = 30. The subscripts denote the
iteration number.

METHODN NMSE RMSE SNR PSNR NCD
[10−3] [dB] [dB] [10−4]

NONE 905.930 42.674 10.429 15.528 305.550

AMF1 128.940 16.099 18.896 23.995 122.880
AMF3 97.444 13.996 20.112 25.211 95.800
AMF5 113.760 15.122 19.440 24.539 92.312

VMF1 161.420 18.013 17.920 23.019 161.700
VMF3 104.280 14.478 19.818 24.916 128.620
VMF5 96.464 13.925 20.156 25.255 121.790

BVDF1 354.450 26.692 14.504 19.603 152.490
BVDF3 336.460 26.006 14.731 19.829 123.930
BVDF5 338.940 26.102 14.699 19.797 118.500

GVDF1 140.970 16.833 18.509 23.607 126.820
GVDF3 93.444 13.705 20.294 25.393 94.627
GVDF5 91.118 13.534 20.404 25.503 89.277

DDF1 176.670 18.845 17.528 22.627 152.050
DDF3 119.330 15.488 19.232 24.331 119.940
DDF5 110.620 14.912 19.561 24.660 113.390

HDF1 143.190 16.966 18.441 23.539 139.360
HDF3 82.413 12.871 20.840 25.939 104.620
HDF5 74.487 12.236 21.279 26.378 97.596

AHDF1 132.710 16.333 18.771 23.869 138.180
AHDF3 75.236 12.298 21.236 26.334 103.410
AHDF5 68.563 11.740 21.639 26.738 96.327

FVDF1 108.760 14.786 19.635 24.734 111.220
FVDF3 73.796 12.179 21.320 26.418 83.629
FVDF5 76.274 12.382 21.176 26.275 80.081

ANNF1 110.720 14.919 19.558 24.656 113.560
ANNF3 75.652 12.332 21.212 26.310 86.836
ANNF5 76.757 12.421 21.149 26.247 82.825

ANP-E1 128.590 16.077 18.908 24.007 122.890
ANP-E3 90.509 13.488 20.433 25.532 97.621
ANP-E5 96.930 13.959 20.135 25.234 94.131

ANP-G1 128.600 16.078 18.908 24.006 122.900
ANP-G3 90.523 13.489 20.432 25.531 97.603
ANP-G5 96.990 13.963 20.133 25.231 94.134

ANP-D1 113.900 15.131 19.435 24.533 115.230
ANP-D3 74.203 12.213 21.296 26.394 85.026
ANP-D5 76.265 12.381 21.177 26.275 81.202

VBAMMF1 128.940 16.099 18.896 23.995 122.880
VBAMMF3 97.444 13.996 20.112 25.211 95.800
VBAMMF5 113.760 15.122 19.440 24.539 92.312

NEW1 112,430 15,034 19,491 24,590 118,650
NEW3 53,870 10,406 22,687 27,785 79,115
NEW5 52,225 10,246 22,821 27,920 74,645

Table 3. Comparison of the new algorithm
with the standard techniques (Tab. 1) using
the LENA standard image corrupted by 4% Im-
pulse and Gaussian noise σ = 30. The sub-
scripts denote the iteration number.
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Figure 2. Comparison of the new algorithms with the standard vector median. From top to bottom :
parts of the Lena test image from Fig. 1, images distorted by 4% impulse and Gaussian noise σ = 30,
images filtered with the new algorithm and the results obtained with the vector median.
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Figure 3. Comparison of the new algorithms with the standard vector median. From top to bottom:
parts of the Peppers test image from Fig. 1, images distorted by 4% impulse and Gaussian noise
σ = 30, images filtered with the new algorithm and the results obtained with the vector median.
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