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Abstract  

We consider the problem of spectral reconstruction from 
multispectral images by using non-linear methods. In the 
search for a neural network able to provide noise 
resistance and good generalization we apply Mixture 
Density Networks. This approach has been tested and 
compared with a linear method already used for spectral 
reconstruction of fine art paintings. This has been done 
using simulated and real data. Mixture Density Network 
based methods provide very good results in both cases. In 
particular, for real data acquisition we have scanned a 
Gretag-MacbethTM color chart using a Minolta CS-100 
spectroradiometer and a PCO SensiCam 370 KL 
monochrome camera with an electronically tunable liquid 
crystal spectral filter VariSpec VIS2. The results obtained 
using the data from this experiment clearly show the 
superiority of the Mixture Density Network based 
approach over the linear one used as a reference.  

Introduction  

We consider the problem of spectral reconstruction from 
multispectral images. The pixel value of a channel in a 
multispectral image is the result 1) of the spectral 
interaction of the light radiant distribution with the 
reflectance of an object surface and 2) of the spectral 
sensitivity of the camera combined with the transmittance 
of the optical path including the filter corresponding to 
this channel. Retrieving the spectral reflectance function 
of the object surface at each pixel is highly desirable. It 
allows a more general representation which is 
independent from light spectral distribution and from the 
camera used for the multispectral image acquisition. This 
representation can be used for many different purposes. 
Our interest is in high fidelity color reproduction of fine 
art paintings. As an example, knowing the spectral 
reflectances in each pixel allows us to simulate the 
appearance of a painting under any virtual illuminant.  

In the particular case of color images the number N 
of channels is limited to three. Efforts have been made in 
order to characterize spectral reflectances using just three 
color channels. Some authors have proposed linear 
methods, as in Refs. 10 or 8. Others have proposed non-
linear approaches using neural networks, see for instance 
Refs. 1 and 14 where spectral characterization is 
performed from RGB and YMC tristimulus values. On the 

other hand, neural networks have also been used for other 
purposes in colorimetry, see for instance Tominaga.15  

 In our case, we consider multispectral images with a 
higher number of channels (N>3) and we aim for a more 
precise spectral reconstruction than a raw estimation just 
satisfactory for subjective color reproduction purposes. 
Various linear and non-linear methods like splines, 
modified discrete sine transform (MDST), MDST with 
aperture correction, pseudoinverse, smoothing inverse or 
Wiener inverse have already been proposed as indicated 
by König and Praefcke in Ref. 9, see also Burns and 
Berns,3 Herzog et al.7 In particular, in the field of digital 
archives for fine art paintings, reconstruction of pigment 
spectral reflectance curves has mainly been obtained 
using linear methods, see for instance Refs. 12, 4 or 6. 
The first attempt using neural networks was proposed in a 
previous paper of the authors13 where we studied the 
resistance to quantization noise of the spectral 
reconstruction obtained with different conventional neural 
networks and compared them with a linear method 
already used for spectral reconstruction of fine art 
paintings.5 
 In this paper we consider another approach based on a 
Mixture Density Network, in the search for a neural 
network able to provide noise resistance and good 
generalization, allowing good reconstruction for patterns 
not included in the training set.  

 Density Mixture Networks  

A Mixture Density Network (MDN) is a method for 
solving regression or classification problems that consists 
in building a conditional probability density function 
between outputs and inputs of a given problem [[2]]. In 
the following C represents an input vector of dimension c, 
and S represents an output vector of dimension s.  

 The desired conditional probability density is 
modelled by a mixture of basis functions, usually chosen 
as Gaussians. The parameters of this mixture model are 
estimated from a set of known data (pairs of C and S 
vectors) using a neural network which can be any 
conventional neural network with universal 
approximation capabilities. In our case, the neural 
network used has a classical feedforward structure. The 
mixture model that represent the conditional probability 
density is of the form,  
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where m is the number of Gaussians used, αi(C) are 
mixing coefficients, and every gi(S|C) are the following a 
multidimensional Gaussian function:  
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parameterized by scalars σi for the variances (all 
dimensions having the same variance) and vectors µi of 
dimension s representing their centres. Consequently, the 
vector V which parameterises the mixture model contains 
m(1+1+s) elements.  

A Mixture Density Network being based on a neural 
network, it needs a training phase. In this phase the neural 
network learns the mapping between each input vectors C 
and its associated parameter vector V defining a 
conditional probability density function. The learning 
process is driven by the minimization of the negative 
logarithm of the likelihood, formally:  

,)()(ln
1 








α−= ∑∑
=

ppipi

m

iP

CSgCE  

where p represents an index of a pattern and P is the 
number of patterns. Consequently we are training the 
system over a set of P pairs (Cp,Sp). In the following 
section, for simplicity we will avoid the use of P and p.  

Estimating Reflectances  

Our aim is to estimate the spectral reflectance of pigments 
from multiespectral images. We are interested in the 
reconstruction of spectral curves between 400 and 760 nm 
which is the visible part of the spectrum. We reconstruct a 
spectral reflectance curve as a sequence of s regularly 
sampled values taken from 400 to 760 nm at constant d 
nm intervals.  

Our problem consist in the construction of a system 
that maps a vector C containing camera values to a vector 
S representing a sampled spectral curve. As long as pairs 
(C,S) are known this problem can be solved by the 
construction of a MDN system from this data.  

In this context the probability P(S|C) becomes the 
conditional probability of a spectral curve S being 
obtained from a particular camera response vector C. That 
means, we are building a function that assigns 
probabilities to all possible vectors S in a s dimensional 
space. Every point of this space represents the probability 
of a particular vector S being the counterpart of the given 
input C.  

Minimizing the negative logarithm of the likelihood 
over a database of pairs (C,S) we fix the weights of the 
neural network of the MDN. Once the neural network 
trained, the MDN provides a mapping between a camera 
response vector C and a parameters vector V. Of course, 
we are interested in finding a single sampled spectral 
curve S that provides the best estimation given a vector C. 
For that purpose we need to chose a way to extract this 

vector S from the mixture model represented by the 
parameter vector V.  

In general, maximizing the obtained conditional 
density will give us the S with highest probability, that is 
indeed what we are looking for. But maximizing the 
mixture model is a problem not solved in closed form and 
implies the application of an iterative optimization 
procedure that is CPU consuming. We use a much quicker 
and simpler strategy by keeping as solution the vector S 
associated to the Gaussian with bigger mixing coefficient: 

 )}.({max Ci
i

α  

This strategy is justify as long as in our problem we 
systematically obtain mixture models in which one 
Gaussian has a much bigger mixing coefficient than the 
others. In fact, we have compared results coming from 
different strategies and the one used (max) and the actual 
optimization of the function obtain mostly the same 
results. In our case, the maximum of the mixture model is 
well approximated by the means of the biggest Gaussian. 
In Figure 1 a graphical summary of the method can be 
seen.  

 

 

Figure 1. MDN Spectral Estimation.  

Experimental Results  

We have tested the proposed reconstruction approach by 
using both simulated and real data. We compare the 
results obtained using this mixture density network 
method with those obtained using the pseudo-inverse 
based reconstruction method described in Ref. 5. This 
method takes into account a database of spectral 
reflectances in order to constraint the solutions of the 
pseudo-inverse.  

Simulated Data  
Comparisons are performed over the four following 

spectral reflectance databases of pigments, the first three 
of them kindly provided by D. Saunders from The 
National Gallery, London:  
• the “Kremer” database contains 184 spectral samples 

of pigments produce by Kremer Pigmente, Germany. 
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We use this database for training the MDN and to 
determine the linear transformation in the pseudo-
inverse based method.  

• the “Selected Artists” database contains 67 pigments 
chosen among a collection of artist’s paintings.  

• the “Restoration” database contains a selection of 64 
pigments used in oil painting restoration.  

• the “Munsell” database is not issue from the same 
canvas painting environment. It contains spectral 
curves corresponding to 1269 matte Munsell colour 
chart samples.  

  
These databases having been sampled at different 

rates and with different limits, we resampled them in 
order to represent each spectral reflectance curve as a 
sequence of regularly sampled values from 400 to 760 nm 
at 10 nm intervals, which corresponds to s=37 values. To 
obtain the multispectral camera responses we use a 
simulated seven channel camera with equidistributed 
Gaussian filters over the range 400 to 760 nm, with 50 nm 
half-bandwidth. We choose as spectral sensitivity of the 
camera sensors a typical response of CCD arrays. If no 
noise is introduced in this simulation process, we remark 
that the theoretical camera model remains a perfect linear 
process. This is the reason that justifies the use of a linear 
based method as a reference method for spectral 
reconstruction.  

In order to study the robustness of these methods in 
the presence of noise, we simulate acquisitions with 
quantization noise by using different numbers of bits for 
representing the camera channels. We present simulation 
results that shows the resistance of a Mixture Density 
Network for camera responses being quantized at 12, 10 
and 8 bits. The choice of these three levels corresponds to 
the actual quantization levels observed on digital cameras 
currently available. The large signal to noise ratio (SNR) 
corresponding to 8 bits quantization is representative of 
most common digital images. The much lower SNR 
corresponding to 12 bits is available at the present time 
only on high-end digital cameras. Simulations performed 
with 12 bit quantization are indeed close to simulations 
without noise, and they provide results very similar to a 
perfect linear theoretical model. On the other hand, for 8 
bit quantization the linear relationship is strongly 
corrupted by noise and the robustness of a reconstruction 
method against noise becomes predominant, which is not 
in favor of linear reconstruction methods.  

We have tested different numbers of Gaussians in the 
mixture model and we have chosen the simplest MDN 
containing just one Gaussian (m=1, V-dimension = 39) 
that indeed performs well in these simulations. The 
associated neural network hidden layer contains 28 
neurons which correspond to a network with 1288 
weights. The choice of the MDN architecture parameters 
is behind the scope of this paper and will not be discussed 
here.  

In Table 1 we present our results as spectral 
reconstruction errors. For a given database they are 
calculated as the average of the L1 distance (mean value of 
the absolute differences) between each real spectral curve 
and its reconstructed counterpart. We can see that at 8 bits 
this error is decreased about 40% for all databases tested. 
This result confirms that the MDN based method used is 

more robust in presence of noise than the linear reference 
one. It is also remarkable that the MDN response on 12 
bits continues to be slightly better than the reference 
method, even if at this signal to noise ratio the 
reconstruction problem is nearly linear. Furthermore, we 
note that the MDN based method generalizes well over 
the three databases not used as training set, specially over 
the Munsell database since this database is not based on 
oil pigments as it is the case for the training set and the 
two others.  

In order to compared the colorimetric behaviour of 
the reconstructed curves with the original ones, Table 2 
shows the CIELAB errors corresponding to the same 
experiments as Table 1. For each database the CIELAB 
error is the average of the CIE 1976 CIELAB colour-
difference between each real spectral reflectance curve 
and its reconstruction, D50 being used as reference 
illuminant. We observe the same general behaviour as in 
Table 1: the CIELAB error for the MDN method is 
always better in presence of strong noise than for the 
reference method and remains comparable when noise is 
low (12 bits quantization), although not clearly stated as it 
is for the spectral error. 

 

Table 1. Spectral Error over different databases.  
8 bits quantization pinv MDN 
Kremer 0.0248 0.0138 
Selected Artists 0.0230 0.0154 
Restoration 0.0219 0.0136 
Munsell 0.0202 0.0144 
10 bits quantization pinv MDN 
Kremer 0.0126 0.0094 
Selected Artists 0.0119 0.0110 
Restoration 0.0113 0.0186 
Munsell 0.0114 0.0098 
12 bits quantization pinv MDN 
Kremer 0.0109 0.0089 
Selected Artists 0.0105 0.0107 
Restoration 0.0093 0.0081 
Munsell 0.0103 0.0094 
 
 

Table 2. CIELAB Error Over Different Databases.  
8 bits quantization pinv MDN 
Kremer 4.6996 2.9995 
Selected Artists 4.2582 3.9300 
Restoration 3.8773 2.7178 
Munsell 2.8551 2.6556 
10 bits quantization pinv MDN 
Kremer 1.6944 1.4398 
Selected Artists 1.7265 1.5712 
Restoration 1.4521 1.1781 
Munsell 1.3179 1.4599 
12 bits quantization pinv MDN 
Kremer 1.3351 1.2227 
Selected Artists 1.1909 1.4603 
Restoration 1.0956 1.0041 
Munsell 1.0944 1.3353 
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We have scanned a GretagMacbethTM color chart 
using a Minolta CS-100 spectroradiometer and a PCO 
SensiCam 370 KL monochrome camera with an 
electronically tunable liquid crystal spectral filter 
VariSpec VIS2. From this experiment we obtained 200 
spectral curves from 380 to 780 nm sampled at 1 nm 
intervals, each curve corresponding to a patch of the 
chart. We also acquired 12 images of the Gretag-
MacbethTM chart using the PCO digital camera and 12 
band-pass Gaussian-shaped filters using the tuneable 
filter, their centres being equally distributed from 400 to 
740 nm with a mean half-bandwidth of 30 nm. 
  

Table 3. Spectral Error Over GretagMacbethTM Chart.  
 pinv MDN 
Training Set 0.0267 0.0162 
Test Set 0.0239 0.0134 
 

In Table 3 we compare the spectral reconstruction 
errors (L1 distance) obtained by a pseudo-inverse based 
method with a Mixture Density Network using 8 
Gaussians in its mixture model and 40 neurons in the 
hidden layer of its feed-forward neural network. This 
comparison is performed over two complementary sets of 
measured patches belonging to the GretagMacbethTM 
chart. Set 1 contains 150 patches and is used for training, 
set 2 contains 50 patches not included in the training set. 
We can see that the MDN based method globally 
decreases the errors about 40% on the training set and 
about 44% on the test set.  
 

Table 4. CIELAB Error Over GretagMacbethTM Chart  
 pinv MDN 
Training Set 3.9707 2.6730 
Test Set 4.1533 2.3248 

 
 
Table 4 shows the same information as table 1 but for 

CIELAB errors. We observe that the MDN based method 
globally decreases CIELAB errors about 33% on the 
training set and about 44% on the test set.  

In order to better compare the reconstruction 
behaviour of both methods we show in Figure 3 the 
spectral error histograms for the pseudo-inverse based and 
the MDN based method. The error has been linearly 
quantized into ten bands represented by bars. Each bar 
indicates the number of spectral curves belonging to its 
error band. We clearly see that the error distribution is 
much better for the MDN method, most spectral curve 
reconstruction errors remaining in the first three bands.  

In figure 3 we include some examples of spectral 
curves in order to visually compare both reconstruction 
methods. Although we have observed that for same 
samples the linear method performs comparably or even 
better than the MDN method, in general we clearly see 
that MDN reconstructed curves match better the real 
reflectance curves. This is sensible as MDN spectral 
errors are statistically 40% better than the errors obtained 
by the linear reference method.  

 

 

Figure 2. Histograms of the error for the pseudo-inverse based 
method (up panel) and the Mixture Density Network (MDN) 
based method (bottom panel).  

  

Conclusion  

We have developed a new spectral reconstruction method 
based in a mixture density network. We have compared 
this new method with a pseudo-inverse based one 
described in Ref. 5. For this comparison we have used 
simulated data in order to show the reaction of both 
methods in presence of noise. The new method performs 
better in mostly all cases.  

We have used also real data as an end test to the new 
method. This real data was acquired in our laboratory 
using a spectroradiometer and a multispectral camera in 
controlled conditions. Afterwards both methods were 
applied to this real data and the mixture density network 
based one shows clearly superior results.  
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Figure 3. Six samples of reconstructed real curves taken from the GretagMacbethTM colour chart not belonging to the training set. 
Black continuous curves have been obtained by using a Minolta CS-100 spectroradiometer, dotted curves are reconstructed by the 
linear reference method and half-dotted curves are reconstructed by the MDN based method. 
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