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Abstract
How many components are needed to represent the spec-
tral reflectance of a surface? What is the dimension of
a spectral reflectance? How many image channels are
needed for the acquisition of a multispectral colour im-
age? Such and similar questions have been discussed ex-
tensively in the literature. We have done a survey of the
literature concerning this topic, and have seen that there
is a large variation in the answers. We propose a method
to quantify the effective dimension of a set of spectral re-
flectances. The method is based on a Principal Compo-
nent Analysis, and in particular on specific requirements
for the accumulated energy of the principal components.
We apply the analysis to five different databases of spec-
tral reflectances, and conclude that they have very differ-
ent statistical properties. The effective dimension of a set
of Munsell colour spectra is found to be 18, that of a set
of natural object reflectances 23, while the effective di-
mension of a set of reflectances of pigments used in oil
painting was only 13.

1. Introduction

For example in the design of a multispectral colour imag-
ing system,1–4 it is of strong interest to have knowledge
about the nature of the spectral reflectances that are going
to be imaged. One particular design choice that is relevant
to this study is the number of image channels.

The effective dimension of reflectance spectra, that is,
the number of components needed to describe a spectrum
in a vectorial space has been discussed extensively in the
literature, and we review this literature briefly in Section
2. We see that the existing conclusions concerning the
dimension of spectral reflectances, and also the number of
channels needed to acquire multispectral colour images,
are rather dispersed. Furthermore, quite often, the applied
statistical analysis is quite elementary, and conclusions are
drawn without clear objectives.

In Section 3 we therefore propose a method for a com-
parative analysis of sets of spectral reflectances, using sta-
tistical tools such as the Principal Component Analysis.
In particular, we define the effective dimension of a set of
spectral reflectances. In Section 4 we apply this analysis to
five different sets of spectral reflectances, and in Section 5
we discuss the results and draw some conclusions.

2. Literature review

Possibly the first attempt to fit a linear model to a set
of empirical surface spectral reflectances was performed
by Joseph Cohen 5 of the University of Illinois in 1964.
He analysed a subset of 150 out of 433 Munsell chips,
and concluded that their reflectances depend on only three
components, which account for 99.18% of the variance.
Among later studies on Munsell colours, Eem et al. 6 pro-
pose four, Maloney 7 proposes five to seven, Burns 8,9 pro-
poses five or six, Lenz et al. 10,11 use six, and Parkkinen
et al. 12 and Wang et al. 13 claim that eight components are
necessary.

For human skin, the use of three components is pro-
posed by Imai et al. 14,15 and Sun and Fairchild 16. For
oil painting, five is proposed by Miyake et al. 17,18, while
Maı̂tre et al. 19 claim that ten to twelve factors are needed.
Garcı́a-Beltrán et al. 20 use a linear basis of seven vec-
tors to represent the spectral reflectance of acrylic paints.
For data including reflectances of natural objects, Danne-
miller21 and Chiao et al. 22 state that three is sufficient,
Vrhel et al. 23 proposes three to seven basis functions, Prae-
fcke24 proposes five, while Keusen 25,43 states that up to
ten is needed. Laamanen et al. 26 recently stated that if
a general basis should be used to represent spectral re-
flectances, the dimensionality might be around 20.

For the realisation of a multispectral colour image ac-
quisition system, the choices of the number of image chan-
nels are also many: three by Miyake’s group 14,15,27,28 —
four by Chen and Trussell 29 and Hauta-Kasari et al. 30 —
five by Haneishi et al. 17,18,31 and Kollarits and Gibbon 32

— six by Tominaga 33,34, Herzog et al. 35, and Imai and
Berns36 — seven by Saunders and coworkers 37,38, Abrardo
et al. 39, Burns8,9, and Ribés et al. 40 — five to ten byHarde-
berg et al. 41,42 — ten to twelve byMaı̂tre et al. 19 — twelve
to fourteen by Keusen 25,43 — sixteen by König 44,45 and
Yamaguchi et al. 46,47 — and twenty-nine by Baronti et al. 48.
We have previously evaluated several set-ups using from
three to seventeen channels and a Liquid Crystal tunable
filter1–3, without drawing firm conclusions concerning the
optimal number of channels.

We see that the existing conclusions vary over a broad
range, both concerning the dimension of spectral reflec-
tances, and the number of image channels needed in order
to capture appropriate information about the spectral re-
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flectance in a scene. For a more in-depth literature review
concerning the dimension of spectral reflectances, refer to
Appendix F of reference 1.

3. Analysis of spectral reflectance data sets

3.1. Principal Component Analysis

According to Jolliffe 49, the central goal of a principal com-
ponent analysis (PCA) is to reduce the dimensionality of
a data set which consists of a large number of interrelated
variables, while retaining as much as possible of the vari-
ation present in the data set. The reason for applying PCA
to a set of spectral reflectances is mainly twofold:

� To acquire information about the dimensionality of
the data. Are all the reflectances of the set linearly
independent, or in which way are they dependent?
How many factors are required to represent a spec-
tral reflectance? This may give an indication on the
number of channels to be used in a multispectral
colour imaging system.

� To allow compression of spectral information. A
spectral reflectance can be approximated using a re-
duced number of principal components. This is par-
ticularly important for multispectral colour imaging
since the image file sizes tend to be prohibitively
large.

To implement the PCA analysis, we use the Singular
Value Decomposition (SVD) algorithm. Numerous vari-
ants of the SVD algorithm exist. We apply here the version
implemented in Matlab. We recall that for any arbitrary
�� -line � � -column� matrix � of rank �, there exist an
�� ��� unitary matrix� and a �� � � � unitary matrix
� for which

� � ���
�
� (1)

where � is an �� � � � matrix with general diagonal
entries ��, � � � � � � �, denoted singular values of �,
and the columns of the unitary matrix � are composed
of the eigenvectors ��, � � � � � �� , of the symmetric ma-
trix���. (Note that the singular values correspond to the
square roots of the eigenvalues.)

For our PCA analysis, we denote our data set of �
reflectances �� as the �� � � � matrix� � ����� � � � ���,
and we define the matrix� as

� �
�
�� ��� �� ��� � � � �� ���

�
� (2)

where �� is the mean values of the reflectance spectra,

�� �
�

�

��

���

��� (3)

Applying the SVD, the resulting matrix � (cf. Eq. 1)
is a �� ��� column-orthogonal matrix describing an or-
thogonal basis of the space spanned by� or equivalently

by�. We denote this space by����, the range of�, and
note that ���� � ���� � ����. We will denote the
columns of �, called nodes in PCA terminology, as the
characteristic reflectances of the data set. � is a diago-
nal matrix containing on its diagonal the singular values
��, in order of decreasing magnitude.

In accordance with previous studies, we have observed
that there is a strong concentration of variance/energy in
the first few singular values (see Figure 3). This suggests
that the spectral reflectances may be approximated using a
small number of components, as described in the follow-
ing section.

3.2. Effective dimension

The dimension � of the space ���� is rigorously deter-
mined by � � �	
����, which is given by the number
of non-null singular values. If the columns of �, the re-
flectance spectra, are linearly independent, then � � � .
(This supposing that � 	 � . If � 
 � , then � � � .)
However, if some singular values are very close to zero,
which is often the case, the effective dimension of the
space, denoted��, may bemuch smaller. That is, it is pos-
sible to construct an adequate representation of the spec-
tral data in a more compact form, using merely�� princi-
pal components, �� being generally significantly smaller
than �. Given a reflectance spectrum represented by the
� -vector 	 � � � �, the vector of principal components

 � �
�
� � � � 
���

� is given by


 � ��
�
	� (4)

�� being defined as the first �� 	 � characteristic re-
flectances, 
 thus being a �� -vector. The reconstruction of
an approximation ��of the original reflectance is obtained
by

�	 � ��
 � ����
�
	� (5)

and consequently

��� ��
 � � ����
���� ��  �� (6)

The spectral reconstruction error is thus identified as

�� � ������ � ��� ����
���� ��� �� (7)

To determine an estimation of the effective dimension
of the space ����, that is, a good choice of ��, we need
to determine how many principal components that must
be taken into account to represent the data. To this end,
in addition to the measurement of spectral reconstruction
errors, the notion of accumulated energy��� �� � turns out
to be useful. Accumulated energy is defined as the ratio of
the energy or variance represented by the first �� singular
vectors, to the total energy, as follows:

��� �� � �

��� ��

��� ������

��� ��

� (8)
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We may also define the residual energy ��� �� � � � �
��� �� �, that is, the energy represented by the principal
components that are not taken into account. As an exam-
ple, we present in Figure 1 the mean and maximal spec-
tral reconstruction error ������, over a set of spectral re-
flectances, compared to the residual energy, using �� prin-
cipal components. We see that the mean spectral recon-
struction error is highly correlated to the residual energy,
while the maximal error shows a more random variation,
although still correlated.
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Figure 1: Example of mean and maximal spectral reconstruction
error using the �� first principal components, compared to the
residual energy, using the PIGMENTS data.

This result suggests that we may use the accumulated
energy as a criterion to define an appropriate choice of
dimensionality��. We define thus

��

def
� ��
� �� ���� �� � � �req	� (9)

The definition of the effective dimension depends thus
on the choice of required accumulated energy� req. A typ-
ical value seen in the literature 9,17 is �req � ���, and
we propose therefore to use this as a default value when
calculating the effective dimension.

4. Experimental Results

We have applied the proposed analysis to five sets of spec-
tral reflectances (Figure 2). PIGMENTS; a set of reflectan-
ces from a target made using 64 different oil pigments
used in the restoration of old paintings. The target was
provided to the ENST by the National Gallery in London
(courtesy of David Saunders). 19,37 MUNSELL; a set of re-
flectances of 1269 matte finish Munsell colour chips mea-
sured and made available by Jussi Parkkinen and his col-
leagues at the University of Joensuu, Finland 12,50. NATU-
RAL; the reflectances of 218 coloured samples collected
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Figure 2: Examples of reflectance spectra from the different
databases: PIGMENTS, MUNSELL, NATURAL, OBJECT, and
SUBLIM.
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from the nature, obtained from the same source. OB-
JECT; 170 reflectances of various natural and man-made
objects provided by Michael Vhrel. 23 SUBLIM; 125 re-
flectances from a Mitsubishi S340-10 CMY sublimation
printer. 1 To be able to compare these different reflectance
sets, we have resampled all data to a common wavelength
resolution of 10nm, and a wavelength interval from 400nm
- 700nm. For more details about the sets, such as the mea-
surement equipment used, see reference 1.

We apply the PCA analysis to the different databases.
The relative magnitude of the singular values, that is, the
eigenvalues of the covariance matrix ��� are shown in
Figure 3. In Figure 4 and Table 1, the accumulated energy
represented by the �� first characteristic vectors is shown.
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Figure 3: Comparison of singular values of the 5 different
databases in logarithmic scale. The steeper the curves decrease,
the more the energy is concentrated in the first singular vectors.

Analysing the data reported in Table 1, we may con-
clude that a different number of basis vectors should be
chosen, depending on the database used to calculate the
covariance matrix, see Table 2. As expected, the NATU-
RAL data shows the highest dimensionality, and the SUB-
LIM data the lowest, but they do exhibit a rather similar be-
haviour. If we require that � req � ��� of the signal vari-
ance should be accounted for, we can encode the spectra
using 10 components for the SUBLIM reflectances, while
as many as 23 components would be needed for the NAT-
URAL data. The MUNSELL data set has an effective di-
mension of 18, the OBJECT data 15, and the PIGMENT set
13. Especially if we consider the two largest sets, MUN-
SELL and NATURAL, we see that the results comply fairly
well with Laamanen’s recent paper, 26 in which it was sug-
gested that the dimensionality of a general spectral basis
was around 20.
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Figure 4: Comparison of the accumulated energy ��� �� � of the
different databases. For example if �req � ��� of the signal
energy should be preserved, 23 singular vectors should be used
for theNATURAL data, while 10 is enough for the SUBLIM data.

5. Discussion and Conclusion

We have proposed a new method to quantify the effective
dimension of a set of spectral reflectances. The method
uses the Principal Component Analysis algorithm, and a
criterion on the required accumulated energy in the re-
tained principal components. In alignment with previous
studies, we propose to use 99% accumulated energy in the
definition of the effective dimension, even if this choice is
rather heuristic.

By our analysis we have shown that spectral reflectan-
ces from different databases have different statistical prop-
erties. When fixing the amount of signal variance that
should be accounted for, approximately twice as many
components are needed to encode a spectrum from the
NATURAL database than for the SUBLIM data.

One of the goals of this study was to analyze the im-
portance of the data set being adapted to the application.
Our conclusion is that the different reflectance data set
have very different statistical properties, and that, there-
fore, for a given application, an appropriate set should be
used. Our results have important practical consequences
when designing a multispectral image acquisition system.
However, one should be careful in applying the results di-
rectly to the design of imaging systems, since many other
factors come into play in that context, such as imaging
noise and intent.

Directions for further studies on this subject could be
to apply the analysis to other spectral databases 51,52 and
to further study the relationship between the linear bases
designed from the different data sets. Is it important to use
oil painting reflectances when designing a multispectral
image acquisition system for paintings, or could a standard
set of Munsell reflectances equally well be used?
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Table 1: Accumulated energy ��� �� � of the different databases.
The entries corresponding to design choices of �req � ���� and
�req � ���� are underlined, and reported in Table 2.

�� MUNSELL NATURAL OBJECT PIGMENT SUBLIM
1 0.4783 0.4235 0.4833 0.4344 0.4005
2 0.6955 0.5836 0.6710 0.6714 0.6724
3 0.8288 0.7265 0.7841 0.7944 0.8491
4 0.8763 0.7953 0.8345 0.8583 0.9108
5 0.9094 0.8363 0.8750 0.8992 0.9426
6 0.9282 0.8695 0.9067 0.9242 0.9626
7 0.9446 0.8999 0.9273 0.9449 0.9737
8 0.9554 0.9204 0.9462 0.9593 0.9825
9 0.9652 0.9344 0.9581 0.9701 0.9871
10 0.9718 0.9448 0.9674 0.9788 0.9907
11 0.9767 0.9533 0.9749 0.9848 0.9926
12 0.9801 0.9596 0.9795 0.9888 0.9943
13 0.9829 0.9655 0.9836 0.9917 0.9951
14 0.9854 0.9701 0.9875 0.9942 0.9960
15 0.9871 0.9738 0.9903 0.9955 0.9967
16 0.9883 0.9766 0.9925 0.9963 0.9972
17 0.9896 0.9791 0.9941 0.9971 0.9975
18 0.9908 0.9814 0.9954 0.9977 0.9978
19 0.9917 0.9835 0.9962 0.9981 0.9981
20 0.9925 0.9854 0.9970 0.9984 0.9984
21 0.9933 0.9872 0.9976 0.9987 0.9986
22 0.9941 0.9889 0.9981 0.9989 0.9988
23 0.9949 0.9904 0.9985 0.9991 0.9990
24 0.9956 0.9918 0.9989 0.9993 0.9991
25 0.9963 0.9932 0.9992 0.9994 0.9993
26 0.9970 0.9945 0.9994 0.9996 0.9994
27 0.9977 0.9957 0.9996 0.9997 0.9996
28 0.9983 0.9969 0.9997 0.9998 0.9997
29 0.9989 0.9981 0.9998 0.9999 0.9998
30 0.9995 0.9991 0.9999 0.9999 0.9999
31 1.0000 1.0000 1.0000 1.0000 1.0000

Table 2: Effective dimension �� for the different databases for
required accumulated energy of 0.90 and 0.99.

�req MUNSELL NATURAL OBJECT PIGMENT SUBLIM
0.90 5 8 6 6 4
0.99 18 23 15 13 10
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