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Abstract
Understanding reflection is one of the key competences in
graphic arts industry. A very popular approach was given
by KUBELKA-MUNK [1] who derived a simple relation-
ship between the scattering and absorption coefficients and
the overall reflectance. In the course of time, the theory
was extended by several authors, see [2], [3] for recent im-
provements. This paper presents an alternative approach
which describes the behavior of light in matter as a ran-
dom walk. In this respect KUBELKA-MUNK is closely cor-
related to both well-known stochastic theories and recent
combinatorial research, in particular with catalan numbers.

1. Introduction

The original theory of KUBELKA-MUNK dates back to
1931, see[1]. A horizontal colorant layer with thickness
D is considered. We suppose that the paint (material) is
homogeneous. Then any light inside the layer travelling
in any direction can be divided into its vertical and hori-
zontal components. For simplification, the horizontal com-
ponents are ignored. Therefore only two vertical fluxes of
light have to be considered: a downward flux i and a up-
ward flux j. Let ix and jx be the intensities of these two
fluxes at the distance x, x ≤ D, from the top surface. Then
the KUBELKA-MUNK theory is based on the assumption
that the fractional amount of light lost by absorption (scat-
tering) between x and x + dx is given by Kdx (Sdx),
where K (S) is denoted by absorption (scattering) coeffi-
cient. Light absorbed between x and x + dx is lost, but
light scattered from direction i is added to j and vice-
versa1. On these assumptions we obtain

d ix
dx

= (K + S) · ix − S · jx (1)

and
d jx

dx
= S · ix − (K + S) · jx (2)

which implies

d rx

dx
= S · rx

2 − 2 · (K + S) · rx + S, (3)

1note that K and S are functions of wavelength

where

rx =
jx

ix

is called the reflectance ratio. Now, the aim is the determi-
nation of the reflectance

R
def= r0.

A first solution of equation (3) arises if the layer is so
thick that further increases in thickness do not significantly
change its reflectance, i.e.

d rx

dx
= 0.

In this situation we use R∞ for the value of (r0)D→∞ and
hence

R∞ = 1 +
K

S
−

√(
1 +

K

S

)2

− 1 (4)

which is equivalent to

K

S
=

(1 −R∞)2

2R∞
. (5)

This was the original result of KUBELKA-MUNK [1].
Well-known variants are proposed by FOOTE [4], [5]

R∞ = 1 +
K

S
−

√
K2

S2
+

2K
S

(6)

and by SAUNDERSON[6]

R∞ =
1

1 +
K

S
+

√
K2

S2
+

2K
S

. (7)

Later, KUBELKA solved the equation (3) on the additional
assumption that the reflectance of background (bottom) is
known. Let Rg be this fraction. Then the general solution
is

R =
1 −Rg · (a− b · coth(bSD))

a−Rg + b · coth(bSD)
, (8)

where

a = 1 + K/S, b =
√

a2 − 1
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and coth means the hyberbolic cotangent.
Up to now FRESNEL-effects of the interface between

outside and inside of the colorant layer are ignored. For its
top boundary SAUNDERSON [6, pp.728] found the follow-
ing2: The relation between the reflection R′ from a sam-
ple as measured by the spectrophotometer, and the “re-
flectance” R which the sample would have if measured in
a transparent medium having the same index of refraction
as the sample, can be expressed as

R′ =
k1

2
+ (1−k1) · (1−k2) · R

1 − k2R
. (9)

In this expression, k1 is the fraction of the incident light
which is reflected from the front surface of the sample, and
can be found from FRESNEL’s law for normal incidence
for a change of index of refraction from 1 to n:

k1 =
[
n− 1
n + 1

]2

.

Of this fraction, only one-half is measured by the spec-
trophotometer, and only (1−k1) of the incident light enters
the reflecting sample. The constant k2 is the fraction of the
light incident diffusely upon the surface of the sample from
the inside which is reflected, so that the fraction (1−k2)
emerges from the sample into the integrating sphere.

So far so good. Due to its simplicity, the theory of
KUBELKA-MUNK is in common usage for industrial ap-
plications. However, this concept has also disadvantages,
in particular, from a theoretical point of view. For instance,
it seems to be a nontrivial task to integrate FRESNEL-
effects as boundary condition into the differential equa-
tion (3) [3], [2]. Here we try a new approach for the fore-
going phenomena: instead of treating fluxes of light, we
model the travelling of a photon as a special random pro-
cess similar to a random walk. Our intention is a clear sepa-
ration of physical effects from the mathematical concept, a
new understanding of the underlying mathematics, an eas-
ier interpretation of the involved parameter and a greater
accuracy of the derived formulas. Furthermore, we hope
that this model can be extended to higher dimensions.

2. Photon Motion and Random Walks

A discrete-time birth-and-death process3 can be described
as a sequence of random variables xt, t ∈ IN, assuming
the states � = 0, 1, 2, . . . with probability Pt,�. We suppose
that the process starts at state 0 and epoch 0, hence P0,0 =
1. Direct transitions to state � are only possible from state

2It is not known to the authors that a SAUNDERSON correction for
both boundaries or a corresponding improvement of equation 8 exists.

3see FELLER[7]

�−1 and �+1. The probability that such a transition takes
place between epoch t− 1 and t is noted by4

λt−1,l−1 = Pr(Xt = � | Xt−1 = �− 1) (10)

and

βt−1,�+1 = Pr(Xt = � | Xt−1 = � + 1). (11)

Consequently, the process statisfies

Pt,� = (1 − λt−1,� − βt−1,�) · Pt−1,� (12)

+λt−1,�−1 · Pt−1,�−1

+βt−1,�+1 · Pt−1,�+1.

The solution of recursion (12) clearly depends on λt,� and
βt,�. A random walk is a discrete time birth-and-dead pro-
cess with

λt,� = λ, βt,� = β

and
λ + β = 1,

which simplifies (12) to

Pt,� = λ · Pt−1,�−1 + β · Pt−1,�+1.

A random walk with absorbing barriers at B1 ≤ 0 and
B2 ≥ 0 is a random walk which stops at epoch t if

B1 ≤ Xt′ ≤ B2 for 0 ≤ t′ < t

and
Xt ∈ {B1, B2 }.

Remark. A popular interpretation is given by
FELLER[7, p. 342]: Consider the familiar gambler who
wins or loses a dollar with probabilities λ and β respec-
tively. Let his initial capital be B2 and let him play against
an adversary with initial capital |B1|. The game continues
until the gambler’s capital either is reduced to zero or has
increased to |B1| + B2 that is, until one of the two player
is ruined. We are interested in the probability of the gam-
bler’s ruin and the probability distribution of the duration
of the game. This is the classical ruin problem.

Next, we have to model the travelling of a photon as
a random walk with absorbing barriers. First, we suppose
that the photon moves in every discrete time step from the
discrete level � to �+1 or �−1. The entrance level is � = 0.
The absorbing barrier

B1 = −1

represents the outside of the colorant layer. The second
barrier

B2 = d + 1

4Pr(A | B) means the probability of event A assuming the event B
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stands for the bottom of the layer and, consequently, d ≥ 1
for its thickness. The nontrivial part of our concept is the
transition probability, which has to express the scattering
of light. Usually, the transition probability is a function of
the state � and / or the time t. In our case, this is wrong
because of a travelling photon has a direction “up” or
“down”5 independent of � or t. From this point of view,
scattering has to be understood as changing the direction
from “up” to “down” or vice-versa.

For that reason, let p be the probability that the pho-
ton changes its direction between t and t − 1 because of
scattering effects, hence the transition probabilities of our
process are given by

λt−1,�
def=

{
p if Xt−2 = �− 2
q if Xt−2 = �

(13)

and

βt−1,�+1
def=

{
p if Xt−2 = � + 2
q if Xt−2 = �,

(14)

where, as usual, the complement of p is denoted by

q
def= 1 − p. (15)

Note that the events

Xt−2 = �, Xt−1 = �− 1, Xt = �

and
Xt−2 = �, Xt−1 = � + 1, Xt = �

indicate a change in direction.
Remark. Obviously, the transition probabilities (13)

and (14) do not define a Markov chain. Therefore, the
question arises why we call our process a random walk
which is normally understood as a Markov Chain. The first
reason is that with an additional parameter for the direc-
tion our process can be reformulated as Markov Process
easily which will be the subject of a forthcoming paper

.

Secondly, our argumentation concept in the next section is
very well-known and characteristic for random walks.

Because of our Non-Markovian-transition probability
the initial condition

P0,0 = 1

has to be extended to

P0,0 = 1 and P−1,−1 = 1 (16)

or
P0,0 = 1 and P−1,1 = 1. (17)

Both versions are possible and have their own right. The
condition (16) describes the physical situation when the

5and only these directions, analog to KUBELKA-MUNK

photon is getting into the layer. The second will be induced
by recurrent events. In the rest of the paper probabilities
assuming (17) will be characterized with a bar.

Finally, the probability that the layer material absorbs
the photon during one time unit is denoted by pa and its
complement 1−pa with qa.

Remark. Clearly, the constants qa and p correspond
to K and S. For that reason, we call qa the absorbtion
coefficient.

For simplification FRESNEL-effects at the boundaries
are ignored in a first approach but can be integrated in a
second step analog to (9).

Now, the remaining question is the appearance of the
reflectance R. Obviously, R is equivalent to the probability
that the photon leaves again the colorant layer before it was
absorbed in the material. But more interestingly, this prob-
ability can be expressed as a classical problem connected
to random walks, namely the first-passage time problem
which is illustrated next.

For the moment, we ignore absorption, hence we sup-
pose qa = 1. Let (16) be the initial condition. Then we
consider the event:

0 ≤ X1, 0 ≤ X2, . . . , 0 ≤ Xt−1, Xt = −1 (18)

This means that the photon leaves the layer at time t or in
random walk terminology, the first visit to -1 takes place
at the t-th step, see FELLER [7] for a detailled description.
Let wt be the probability of the event (18). Then we seek
for the generating function

R(z) =
∞∑

t=0

wt · zt. (19)

Proposition: The reflectance R is immediately determined
by R(z).

To see this, let wt(qa) the probability wt for an arbi-
trary absorption coefficient qa, 0 ≤ qa ≤ 1. Then, the
reflectance R is given by

R = w0(qa) + w1(qa) + w2(qa) + · · · . (20)

The definition of qa implies

wt(qa) = wt · qt
a

which together with (20) leads to:

R =
∞∑

t=0

wt(qa) =
∞∑

t=0

wt · qt
a = R(qa) (21)

Therefore, our next aim is the calculation of R(z) which is
the subject of section 3.
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3. Evaluating the Model

First of all, our notation has to be refined in order to con-
sider the influence of the layer thickness. The constant
d ≥ 1 was defined as largest level inside the colorant layer.
Then wd

t means wt for a given d, where d = ∞ has the
same interpretation as in section 1. Furthermore, as men-
tioned earlier the bar in w̄d

t states briefly the initial condi-
tion (17)

P0,0 = 1 and P−1,1 = 1.

The corresponding generating functions and random vari-
ables Xt are characterized in the same way. Since a trav-
elling photon starting at level 0 needs an even number of
steps for coming back to 0, the level -1 is only reachable
for odd t, hence

w̄∞
t = 0 = w∞

t for t even. (22)

Immediately from the definition we obtain

w̄∞
1 = p and w∞

1 = q (23)

which induces

w1 =
q

p
· w̄∞

1 . (24)

Note that for t ≥ 3 the probabilities w̄∞
t and w∞

t are con-
nected by a different identity

w∞
t =

p

q
· w̄∞

t (25)

which can be verified easily by induction on t. Next, we
observe for odd t ≥ 3

w̄∞
t = q2w̄∞

t−2 + p(w̄∞
3 w̄∞

t−4 + · · · + w̄∞
t−2w̄

∞
1 ) (26)

or equivalent with (15) and (23)

w̄∞
t = (1 − 2p)w̄∞

t−2 + p(w̄∞
1 w̄∞

t−2 + · · · + w̄∞
t−2w̄

∞
1 ).

In order to show (26) the event leading to w̄∞
t is divided

into a set of mutually exclusive events A2, A4, A6, . . ..
Clearly, for t ≥ 3 the photon goes to 1 in the first step.
Therefore, there exists a smallest subscript i, 1 < i < t,
with Xi = 0. For every i the event A contains three blocks
of trials.

Block 1. The photon goes to 1 in the first step.

Block 2. The photon needs exactly i−1 further trials to
reestablish the initial situation.

Block 3. It takes exactly t−1 further trials to reach −1.

These three events depend on non-overlapping blocks of
transitions with, by definition, fixed values of X0, X1,
Xi−1, Xi and are therefore mutually independent. Every
block forms a recurrent probability of type w̄t or wt, where
the decision between w̄t and wt is given by the values of
X0, X1, Xi−1 and Xi. From the definition, the events in
block 2 have the probabilities q for i = 2 and w∞

i−1 other-
wise. Obviously, the events in block 3 can be expressed as
w̄∞

t−i. So the probability of the simultaneous realization of
all three events is given by the product

q2 · w̄∞
t−2

for i = 2 and

q · w∞
i−1 · w̄∞

t−i

(25)
= q · p

q
· w̄∞

i−1 · w̄∞
t−i

otherwise. Summing up over all possible i completes (26).
Now we are able to determin R(z). We set

w̄∞
0 = 0

for convenience and

w̄∞
1 = p

was given in (23). Next note that

w̄∞
1 w̄∞

t−2 + · · · + w̄∞
t−2w̄

∞
1

is the (t−1)-th coefficient from

(R̄∞(z))2.

Hence, we infer from (26)

R̄∞(z) − pz

=
∞∑

t=2

w̄∞
t · zt

=
∞∑

t=2

[(1−2p)w̄∞
t−2 + p(w̄∞

1 w̄∞
t−2 + · · · + w̄∞

t−2w̄
∞
1 )]zt

= (1−2p)z2R̄∞(z) + pz(R̄∞(z))2.

The physically reasonable solution of this quadratic equa-
tion is

R̄∞(z) =
1−(1−2p)z2−√

(1−(1−2p)z2)2 − 4p2z2

2pz
.

In a similar way we find for w∞
t

w∞
t = p2w∞

t−2 + q(w∞
3 w∞

t−4 + · · · + w∞
t−2w

∞
1 )

and

R∞(z) =

1+(1−2p)z2−√
(1+(1−2p)z2)2−4(1−p)2z2

2(1−p)z
.
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which is our analog to (6). This solution can be modified
in the sense of SAUNDERSON. Let pi and po be the special
values of p modelling the FRESNEL-effects in connection
with transmitting the level 0 and write f and F instead of
w and R. Then the convolution equation changes to

f∞
1 = 1−pi, f∞

3 = pi(1−p)po

and

f∞
t = pipow

∞
t−2 + (1−po)(f∞

3 w∞
t−4 + · · · + f∞

t−2w
∞
1 )

implying

F∞(z) =
(1−pi)z − (1−po−pi)z2R∞(z)

1−(1−po)zR∞(z)
.

Remark. The foregoing argumentation is typical for the
well-known CATALAN NUMBERS

cn =
1

n + 1
(2n
n

)
satisfying

cn = c0cn−1 + · · · + cn−1c0

for n > 0. Their generating function C(z) is given by

C(z) =
1 −√

1 − 4z
2z

.

A very interesting survey in connection with lattice paths
can be found in [8].

Finally, lets have a glance at bounded d (without
SAUNDERSON-corrections. By induction on t we see
w̄d

t = 0 = wd
t for even t and w̄1

t = qt−1p otherwise im-
plying

R̄1(z) = pz + pq2z3 + pq5z6 + · · ·
= pz(1 + (q2z2) + (q2z2)2 + · · · )
=

pz

1 − q2z2
.

For d ≥ 2 the middle part of the recurrent events have to
be adapted to d− 1, hence

w̄d
t = q2w̄d

t−2 + p(w̄d−1
3 w̄d

t−3 + · · · + w̄d−1
t−2 w̄

d
1)

and

R̄d(z) =
pz

1 − (1 − 2p)z2 − pzR̄d−1(z)

=
1

1 − (1 − 2p)z2

pz︸ ︷︷ ︸
def
= u

−R̄d−1(z)

=
1

u− R̄d−1(z)
.

This shows that for bounded d the generating functions
R(z) have the form of continued fractions, see for survey
[9]. Because of their regular structure a closed form solu-
tion can be expected in near future.

4. Final Remarks

Obviously, the presented approach can be improved in
many ways. Nevertheless, some interesting chances are of-
fered, in particular, the generating function of first visit
probabilities as a powerful tool to understand reflectance
and the hope of an extended, higher dimensional light scat-
tering theory.
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