
A New Lossless Compression Algorithm for
Static Color Images - INA

Juan Ignacio and Larrauri Villamor
 Universidad de Deusto

Bilbao, Spain

Abstract

We present a new algorithm for compression of static
color images. It allows to get higher compression ratios
than the universal methods. Most of these traditional
Lossless methods use techniques based on the elimination
or reduction of the existent redundancy in the data
(pixels), using mainly methods based on statistical models
(e.g. Huffman Coding, Arithmetic Coding), dictionary
models, pattern substitution (LZW...) or predictive coding
of the adjacent pixel or near symbols (FELICS, JPEG...).
This way, they lead to ratios which oscillate from 1:2 to
1:4 being considered these last ones as well acceptable
results.

Alternatively, we propose a new universal method
based mainly on three sequential processes: first,
segmentation of the image in fixed blocks, second,
application of a compression algorithm based on the
structure of data in form of binary tree and last, coding in
order traversal of the binary tree. This method guarantees
as minimum a ratio of compression of 1:3.

 Finally, we have applied the proposed method to a
group of images of different sources and nature
(photographic, satellite, medical etc.) and we have
compared the experimental results with those given by the
universal methods, among which is included JPEG
Lossless proposed as an standard.

Introduction

The compression ratios acquired when compressing Loss-
less images depend directly on the inside structure of the
data, that is, the relation among the pixels and their adja-
cent pixels. Because of this, a universal algorithm which
guarantees the same results with different kinds of images
(scientific, scanned images, photographs,...) does not
exist.

 One method can achieve high ratios with
photographs and little efficient results with a different
type of image and, even a contradiction may happen: an
output compressed file of greater size than the input one
can be got.

Fig.1 RLE-10% Fig2 RLE:33% Fig.3 RLE:50% Fig. 4RLE>Image

Frequently, the inside structure is defined by the
nature of the source image. In this case, we can select the
algorithm which best fits to this source. Nevertheless, in
practice, two images coming from the same origin source,
can have different inside structure.

 The theoretical solution lies in examining the image
a priori getting, through a histogram or probabilistic
calculation, the characteristics of the image and
determining afterwards the optimal model to use.
However, this procedure is not viable in practice, because
it means a former reading of the image which increases
the time and CPU resources.

 We present a new approach based on ensuring a
compression ratio of 1:3 or 66% reduction in size of the
source of the image without loss of data, no matter the
provenance of the original image. From this ratio, the
greater the redundance in the image is, the greater the
achieved compression ratio will be.

Description of the Method

 The compression method consists of three sequential
processes which are represented in the following figure
described in detail below:

I. Source Segmentation Binary tree Encoding
I.Compressed

0101011
1010101
0101010

Figure 5. The sequential steps of the method.

 The segmentation process is the key for the success

of the pixel treatment in form of binary tree structure. The
algorithm is the core of the method and its main novelty.
It consists in representing the pixels of each block by
means of the structure of complete binary tree or pyramid.
This structure is built from couples of pixels which are the
nodes, which are ordered according to what we call the
“distance”. The process of traversal coding allows to
reduce the codeword or path (number of bits used to
represent a node from the root to the node itself) through
of a system of lineal code. Next we describe each of the
processes.

CGIV'2002: First European Conference on Colour Graphics, Imaging, and Vision

423

CGIV 2002: The First European Conference on Colour Graphics, Imaging, and Vision

420

Image Segmentation

Initially, the complete image is divided in blocks of a
fixed size which are not significant. Each block is
composed of 4x4 pixels, no matter the characteristics of
the image The blocks represent the sequential order of
execution of the image until its finalisation. The
sequential order is of up-below and of left to right. If the
image is RGB or true colour or more than 24 bits per
pixel it requires to define the colour, each colour plane
will be processed as an independent plane until the three
planes that define the image are completed.

 I. Source Segmentation Pixels
 I. Source Segmentation Pixels

 7 16 16 16 7 152 152 145 ..
 16 16 16 35 152 7 179 24 ..
 7 7 152 152 180 7 24 145 ..
16 146 146 180 24 146 152 7 . ..

Figure 6. Segmentation process

The image segmentation does not generate data

compression. However, it gives the following benefits: it
increases the execution speed when operating with blocks
of 4 x 4 pixels, it reduces the storage space or memory,
speed up the data visualization when compressing and
decompressing the image, and it adapts the data to a
binary tree data structure to be treated in the next process.

Data Structure: Binary Tree

Some universal methods as Shanon-Fano o Huffman
Coding use the binary tree structure to code the data
basing it on the probability of symbol ocurrance. These
methods use much CPU resources in building up and
coding the binary tree.

 We present a new approach in which the pixels are
deal with as ordered couples. Each ordered couple
generates a node in the binary tree structure. However, we
use an intelligent coding system that lets us know which
pixels form the node without having to travel along the
binary tree.

 The block is the unit for data treatment. It provides
the data adaptation for its treatment as a binary tree
structure. The pixels being different (pj) in each block (bi)
are placed in growing order determining the base of the
complete binary tree

Bi = { p1, p2, p3, p4.... p16 }

 Each couple genarates a node into the binary tree.
This is, each binary tree will contain only eight nodes.
The eight resultant nodes do not represent any
relationship among pixels, but only a value or “distance “
which allows us to simplify the treatment of binary tree
structure reducing the level or height of the tree to a
maximum of 9 levels.

 7 16 16 16
16 16 16 35

 7 7 152 152
16 146 146 180

 7 16 35 146 152 180

7,16, 35, 146, 152,180
p1, p2, p3, p4, p5, p6

Figure 7. Generation of the binary tree.

The entropy is the number of necessary bits to code

the block of 4x4 pixels, H(i)
P(i) = probability of appearance of the pixel.
n(i) = number of bits of code node.

∑
=

=
16

1

)()()(
i

iniPiH (1)

We propose a new algorithm based on the treatment
of the blocks as a data structure in the form of a compact
tree by reduction of the number of levels or height of the
binary tree. Given a block of 16 elements (matrix of 4 x 4
pixels), we represent the block as a data structure in form
of a binary tree, which satisfies the property of being
compact, because although we have 16 elements or pixels
different to treating him as relationship of orderly couples
as maximum we will have 8 nodes which are formed by
each couple. Therefore, we establish that the binary tree
as maximum will have nine levels, and then the total
number of necessary bits to code the block, T(Bi):

n(i) = number of bits of code node.

∑
<=

=
=

9

1

)()(
n

i

inBiT (2)

Formal Description of Data Compression
Algorithm

To encode an image, we treatment the data blocks and
repeat the following step by each block. (B1, B2, B3, ... ,
Bn):

1. Initially we generate a sequence of positive integer

numbers corresponding to the values of the pixels of
the block Bi .

Bi = { p1, p2, p3, p4.... p16 }

where

p1 < p2 < p3 < < pn

2. The pixels group in orderly couples as it is described
in the following example, in order at their distances
in absolute value.

180
152

146
152

146
7

16
7

35
16

16
16

16
16

16
7

16

12

15

11

14

10

13

9

8

4

7

3

6

2

5

1

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

1131

1001

Figure 8. Distance

3. Built the binary tree. The distances represent the level

or height that it occupies the node in the binary tree.

CGIV'2002: First European Conference on Colour Graphics, Imaging, and Vision

424

CGIV 2002: The First European Conference on Colour Graphics, Imaging, and Vision

421

Therefore, the “distance= 0” correspond at the level
base or more low of the tree. The “distance= 1”
correspond at the first level, and so forth. To build
the structure of the data in form of binary tree we
begin with the inferior levels.

 Distance D(0) Distance D(i)=1 Distance D(i) = 3

 7 16 35 146 152 180 7 16 35 146 152 180
O ? O O O O
7 16 35 146 152 180

Figure 9. Generation of the binary tree.

4. Each child node generated believes two parents

nodes, except if the child node is located in the left or
right branch of the tree. In this case, it generates an
only father node.

Properties of the Binary Tree:
a) The binary tree is complete, that is to say each child

node belongs to a father node.
b) All the pixels of the block are contained in at least in

a node, that is to say, all the pixels are represented.
c) In the left branch and another in the right branch of

the tree a node always exists as minimum. This
property still allows to reduce more the bits number.

d) Possibility of compacting of the binary tree only
representing the levels or existent distances.

e) Each node is represented by an unique and inferior
code to 9 bits.

 Theorem:
When the proposed algorithm is applied to a data
structure in form of compact binary tree and which is
composed by the eight resulting nodes of the orderly
couples generated by each block Bi, the total number of
bits (T) employees to code the binary tree,

1tan)(
8

1

++= ∑
=i

low cedisBiT p (3)

plow = the first pixel of the node.
B(i) = Block (4x4 pixels).

 Coding

The methods based in the coding of a binary tree structure
need to travel along the path between a root node and the
value to code in order to get the data coding or codeword.
 Our method simplifies this task. Needing no pointers and
without travelling along the tree, we get the same
codeword as we do with a traverse coding. Codeword
generation is very fast and without CPU resources
consumption. The codeword structure of each ordered
couple will be made of a sequence of consecutive ones
and zeros. The sequence of ones corresponds to the
number of order that the least of the couple pixel has in
the series of integer numbers and the number of zeros is
defined by the “distance” plus one

)1(+−+=

lowhighlow

p

p
Codeword

high

low

where:
low : number of order that the least of the couple pixel has
in the series.
high: number of order that the least of the couple pixel
has in the series.

Applying the example of the figure 4. (Block 1)

1. Sequence of positive integer numbers

p1 < p2 < p3 < < pn
7 < 16 < 35 < 146 < 152 < 180

 N. of order:
 1 , 2, 3, 4, 5, 6

180
152

146
152

146
7

16
7

35
16

16
16

16
16

16
7

Table 1. Coding of each couple of pixels

Our coding system rapidly gets the codewords with
no need to travel along the binary tree. In fact, we prove
that the resulting coding is the same as that got when
applying a traverse coding. In the latest, the root node
corresponds to the pixel of least order p1which is coded
with symbol “10”.

Nodo
Raíz

10 110 1110 11110.. .

Figure 10. Traversal coding

The results are the same as those we get when

applying a traverse coding . Each node corresponding to
the right branch is coded adding a “1” for each crossed
node and a final zero (Level 0). All the ascending nodes
corresponding to the left branch are coded adding a “0”
for each crossed node or level. Therefore, the code of
each node is unique.

Pixels

Order
Low

Order
high

Code-
word
“1”

Codeword “0”
(highlow+1)

Coding

(7,16) 1 2 1 2-1+1 = 2 (00) 100

(16,16) 2 2 11 2-2+1=1 (0) 110

(16,16) 2 2 11 2-2+1=1 (0) 110

(16,35) 2 3 11 3-2+1=2 (00) 1100

(7,16) 1 2 1 2-1+1=2 (00) 100

(7,146) 1 4 1
4-1+1=4

(0000)
10000

(152,146) 4 5 1111 5-4+1=2 (00) 111100

(152,180) 5 6 11111 6-5+1=2 (00) 1111100

Code(100-110-110-1100-100-10000-111100-1111100)=34 bits

CGIV'2002: First European Conference on Colour Graphics, Imaging, and Vision

425

CGIV 2002: The First European Conference on Colour Graphics, Imaging, and Vision

422

 The complete coding of the block is a sequence of
the codewords generated by each of the pixels couples.
Each codeword is made of a series of consecutive ones
and zeros, which lets us reduce more the codeword. In
each codeword “10” is substituted by “0”. Afterwards, the
binary tree is compressed. In the previous example, level
three results inactive and we reduce the nodes in the upper
level in one bit. Therefore, the block consisting in six
different pixels needs 3 bits per pixel, that is, 48 bits. The
coding method allows us to downsize to 31 bits (1.9
bits/pixel). Of course, the compression level will depend
on the combination of the couples of pixels in each image.
The reached results show that in the top limit (16 different
pixels) the required number of bits to code the block is 42
bits (2.6 bits/pixel).

Table 2. Image Compression ratios (True Color)

METHOD

Satellite

Medical

Scanned

Lena

Baboon

Source
size
(Bytes)

400*300=
360.000

512*512=
786.432

400*500
=600.00
0

512*512=
786.432

100*100
=30.000

Substitutio
n
RLE-
PackBits

268.024
Ratio:
26%

432.102
Ratio:
40%

472.727
Ratio:
21%

720.132
Ratio: 8%

28.388
Ratio:
1%

Statistical
Huffman
Coding

351232
Ratio: 4%

646.144
Ratio:
18%

555.008
Ratio:
8%

765.952
Ratio: 3%

29696
Ratio:
1%

Dictionary
LZW,
LZ77, LZ..

266.240
Ratio:
27%

432.128
Ratio:
46%

473.088
Ratio:
22%

719.872
Ratio: 9%

28.672
Ratio:
6%

JPEG-LS
Standard

165.588
Ratio:
54%

239.400
Ratio:
70%

397.312
Ratio:
34%

446.464
Ratio:
43%

22.528
Ratio:
25%

INA
Algorithm

156.242
Ratio:
67%

212.524
Ratio:
73%

366.368
Ratio:
39%

260.244
Ratio:
33%

19.936
Ratio:
34%

Experimental Results

We have analyzed and compared the proposed algorithm
using the rules described above with the standard methods
and the results we get are shown in table 2. We have
applied these new methods to a number of static images
and their compression ratios are greater than those of the
standard methods.

References

1. Rabbani, Majid. Jones, Paul W. “Digital Image
Compression Techniques”. SPIE- International Society for
Optical Engineering. 1991

2. H. Yohoo. “A Losssless Coding Algorithm for the
Compression of Numerical Data”. IEEE Proc. Data
Compression Conference. 1993

3. P. G. Howard and J.S. Vitter. “Fast and Efficient Lossless
Image Compression”. New York: Van Nostrand Reinhold.
1993.

4. Pennebaker, William B. And Joan L. Mitchell. “JPEG Still
Image Data Compression Standard”. New York: Van
Nostrand Reinhold. 1993

5. Held Gilbert and Thomas R. Marshall “Data and Image
Compression: Tools and Techniques”, 4th edition.
Chichester. England, 1996.

6. Mark Nelson “The Data Compression Book ”, 2nd edition.
M&T EdiBooks, New York,1995.

7. David Salomon. “Data Compression: The Complete
reference”, 2nd edition, Springer, 2000.

Biography

Juan Ignacio Larrauri received his B.S. degree in
Computer Science from the Universidad de Deusto at
Bilbao in 1985. Since 1987 until 1999, he has worked in
the Instituto de Formación y Estudios Sociales – IFES.
Since 1999 he is professor in the Universidad de Deusto
and actually he is developing the Doctoral Thesis about
the image compression He is the responsible for the
Industrial Perception Systems Laboratory in the
Department of Automatics and Electronics of the Faculty
of Engineering.

CGIV'2002: First European Conference on Colour Graphics, Imaging, and Vision

426

CGIV 2002: The First European Conference on Colour Graphics, Imaging, and Vision

423

